947 resultados para Yin Yang symbol
Resumo:
Sb-doped and undoped ZnO thin films were deposited on Si (100) substrates by radio frequency (RF) magnetron sputtering. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that all the films had polycrystalline wurtzite structure and c-axis preferred orientation. Room temperature Hall measurements showed that the as-grown films were n-type and conducting (rho similar to 1-10 Omega cm). Annealing in a nitrogen ambient at 400 degrees C for 1 h made both samples highly resistive (rho > 10(3) Omega cm). Increasing the annealing temperature up to 800 C, the resistivity of the ttndoped ZnO film decreased gradually, but it increased for the Sb-doped ZnO film. In the end, the Sb-doped ZnO film annealed at 800 C became semi-insulating with a resistivity of 10(4)Omega cm. In addition, the effects of annealing treatment and Sb-doping on the structural and electrical properties are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have grown MnxGe1-x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07 X 10(19) cm(-3) while the MnxGe1-x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In the paper, we present a new method of restraining the Fabry-Perot resonance. The method is to combine dip angle with taper angle in the structure of the device and avoids the process of antireflection coatings. The experimental results show that restraining effect is apparent. A high threshold current has been obtained for the sample with both dip angle and taper angle structure. It provides a new method to make traveling-wave optical amplifiers.
Resumo:
A polarization insensitive gain medium for optical amplifiers has been fabricated. The active layer is a structure with alternate tensile and compressive strain quantum wells. The waveguide is made into a taper with angled facets. In the experiment we found that the structure can suppress the lasing and decrease the polarization sensitivity. The gain imbalance between transverse electric and transverse magnetic gains is small, and 0.1 dB is obtained at a driving current of 100 mA. The full-width at half-maximum of amplified spontaneous emission is 40 nm within large current. (C) 2002 Elsevier Science Ltd. All rights reserved.
Quantifying the effectiveness of SiO2/Au light trapping nanoshells for thin film poly-Si solar cells
Resumo:
In order to enhance light absorption of thin film poly-crystalline silicon (TF poly-Si) solar cells over a broad spectral range, and quantify the effectiveness of nanoshell light trapping structure over the full solar spectrum in theory, the effective photon trapping flux (EPTF) and effective photon trapping efficiency (EPTE) were firstly proposed by considering both the external quantum efficiency of TF poly-Si solar cell and scattering properties of light trapping structures. The EPTF, EPTE and scattering spectrum exhibit different behaviors depending on the geometric size and density of nanoshells that form the light trapping layer. With an optimum size and density of SiO2/Au nanoshell light trapping layer, the EPTE could reach up to 40% due to the enhancement of light trapping over a broad spectral range, especially from 500 to 800 nm.
Resumo:
A 1.55-mu m hybrid InGaAsP-Si laser was fabricated by the selective-area metal bonding method. Two Si blocking stripes, each with an excess-metals accommodated space, were used to separate the optical coupling area and the metal bonding areas. In such a structure, the air gap between the InGaAsP structure and Si waveguide has been reduced to be negligible. The laser operates with a threshold current density of 1.7 kA/cm(2) and a slope efficiency of 0.05 W/A under pulsed-wave operation. Room-temperature continuous lasing with a maximum output power of 0.45 mW is realized.
Resumo:
A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.
Resumo:
We present a new method for detecting near-infrared, mid-infrared, and far-infrared photons with an ultra-high sensitivity. The infrared photon detection was carried out by monitoring the displacement change of a vibrating microcantilever under light pressure using a laser Doppler vibrometer. Ultrathin silicon cantilevers with high sensitivity were produced using micro/nano-fabrication technology. The photon detection system was set up. The response of the microcantilever to the photon illumination is theoretically estimated, and a nanowatt resolution for the infrared photon detection is expected at room temperature with this method.
Resumo:
This paper describes the design and fabrication process of a two-dimensional GaAs-based photonic crystal nanocavity with InAs quantum dots (QDs) emitters and analyzes the optical characteristics of cavity modes at room temperature. The micro-luminescence spectrum recorded from the nanocavities exhibits a narrow optical transition at the lowest order resonance wavelength of about 1137 nm with about 1 nm emission linewidth. In addition, the spectra of photonic crystal nanocavities processed under different etching conditions show that the verticality of air hole sidewall is an important factor determing the luminescence characteristics of photonic crystal nanocaivties. Finally,,the variance of resonant modes is also discussed as a function of r/a ratio and will be used in techniques aimed at improving the probability of achieving spectral coupling of a single QD to a cavity mode.
Resumo:
A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.