698 resultados para Polynomials.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight $t\leq 2r$, i.e., whose minimum Hamming distance is $2^{2}r+1$.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider some of the relations that exist between real Szegö polynomials and certain para-orthogonal polynomials defined on the unit circle, which are again related to certain orthogonal polynomials on [-1, 1] through the transformation x = (z1/2+z1/2)/2. Using these relations we study the interpolatory quadrature rule based on the zeros of polynomials which are linear combinations of the orthogonal polynomials on [-1, 1]. In the case of any symmetric quadrature rule on [-1, 1], its associated quadrature rule on the unit circle is also given.
Resumo:
Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.
Resumo:
This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In Kantor and Trishin (1997) [3], Kantor and Trishin described the algebra of polynomial invariants of the adjoint representation of the Lie superalgebra gl(m vertical bar n) and a related algebra A, of what they called pseudosymmetric polynomials over an algebraically closed field K of characteristic zero. The algebra A(s) was investigated earlier by Stembridge (1985) who in [9] called the elements of A(s) supersymmetric polynomials and determined generators of A(s). The case of positive characteristic p of the ground field K has been recently investigated by La Scala and Zubkov (in press) in [6]. We extend their work and give a complete description of generators of polynomial invariants of the adjoint action of the general linear supergroup GL(m vertical bar n) and generators of A(s).
Resumo:
Sei $\pi:X\rightarrow S$ eine \"uber $\Z$ definierte Familie von Calabi-Yau Varietaten der Dimension drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invarianter Untermodul $M\subset H^3_{DR}(X/S)$ von Rang vier, sodass der Picard-Fuchs Operator $P$ auf $M$ ein sogenannter {\em Calabi-Yau } Operator von Ordnung vier ist. Sei $k$ ein endlicher K\"orper der Charaktetristik $p$, und sei $\pi_0:X_0\rightarrow S_0$ die Reduktion von $\pi$ \uber $k$. F\ur die gew\ohnlichen (ordinary) Fasern $X_{t_0}$ der Familie leiten wir eine explizite Formel zur Berechnung des charakteristischen Polynoms des Frobeniusendomorphismus, des {\em Frobeniuspolynoms}, auf dem korrespondierenden Untermodul $M_{cris}\subset H^3_{cris}(X_{t_0})$ her. Sei nun $f_0(z)$ die Potenzreihenl\osung der Differentialgleichung $Pf=0$ in einer Umgebung der Null. Da eine reziproke Nullstelle des Frobeniuspolynoms in einem Teichm\uller-Punkt $t$ durch $f_0(z)/f_0(z^p)|_{z=t}$ gegeben ist, ist ein entscheidender Schritt in der Berechnung des Frobeniuspolynoms die Konstruktion einer $p-$adischen analytischen Fortsetzung des Quotienten $f_0(z)/f_0(z^p)$ auf den Rand des $p-$adischen Einheitskreises. Kann man die Koeffizienten von $f_0$ mithilfe der konstanten Terme in den Potenzen eines Laurent-Polynoms, dessen Newton-Polyeder den Ursprung als einzigen inneren Gitterpunkt enth\alt, ausdr\ucken,so beweisen wir gewisse Kongruenz-Eigenschaften unter den Koeffizienten von $f_0$. Diese sind entscheidend bei der Konstruktion der analytischen Fortsetzung. Enth\alt die Faser $X_{t_0}$ einen gew\ohnlichen Doppelpunkt, so erwarten wir im Grenz\ubergang, dass das Frobeniuspolynom in zwei Faktoren von Grad eins und einen Faktor von Grad zwei zerf\allt. Der Faktor von Grad zwei ist dabei durch einen Koeffizienten $a_p$ eindeutig bestimmt. Durchl\auft nun $p$ die Menge aller Primzahlen, so erwarten wir aufgrund des Modularit\atssatzes, dass es eine Modulform von Gewicht vier gibt, deren Koeffizienten durch die Koeffizienten $a_p$ gegeben sind. Diese Erwartung hat sich durch unsere umfangreichen Rechnungen best\atigt. Dar\uberhinaus leiten wir weitere Formeln zur Bestimmung des Frobeniuspolynoms her, in welchen auch die nicht-holomorphen L\osungen der Gleichung $Pf=0$ in einer Umgebung der Null eine Rolle spielen.