On the zeros of polynomials: an extension of the Enestrom-Kakeya theorem
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
24/10/2013
24/10/2013
02/08/2013
|
Resumo |
This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier Inc. All rights reserved. |
Identificador |
Journal of Mathematical Analysis and Applications, Amsterdan, v. 385, n. 2, supl. 1, Part 3, p. 1151-1161, 42005, 2012 0022-247X http://www.producao.usp.br/handle/BDPI/35982 10.1016/j.jmaa.2011.07.037 |
Idioma(s) |
eng |
Publicador |
Academic Press Inc Elsevier Science Amsterdan |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
restrictedAccess Copyright Academic Press Inc Elsevier Science |
Palavras-Chave | #ENESTROM-KAKEYA THEOREM #ZEROS OF PERTURBED POLYNOMIALS #STABILITY OF BROWN (K, L) METHODS #JELTSCH CONJECTURE #MULTISTEP MULTIDERIVATIVE METHODS #POWER-SERIES #STABILITY #MECÂNICA DOS FLUÍDOS COMPUTACIONAL #MATHEMATICS, APPLIED #MATHEMATICS |
Tipo |
article original article publishedVersion |