On the zeros of polynomials: an extension of the Enestrom-Kakeya theorem


Autoria(s): Botta, Vanessa Avansini; Meneguette, Messias; Cuminato, José Alberto; McKee, Sean
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

24/10/2013

24/10/2013

02/08/2013

Resumo

This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier Inc. All rights reserved.

Identificador

Journal of Mathematical Analysis and Applications, Amsterdan, v. 385, n. 2, supl. 1, Part 3, p. 1151-1161, 42005, 2012

0022-247X

http://www.producao.usp.br/handle/BDPI/35982

10.1016/j.jmaa.2011.07.037

http://dx.doi.org/10.1016/j.jmaa.2011.07.037

Idioma(s)

eng

Publicador

Academic Press Inc Elsevier Science

Amsterdan

Relação

Journal of Mathematical Analysis and Applications

Direitos

restrictedAccess

Copyright Academic Press Inc Elsevier Science

Palavras-Chave #ENESTROM-KAKEYA THEOREM #ZEROS OF PERTURBED POLYNOMIALS #STABILITY OF BROWN (K, L) METHODS #JELTSCH CONJECTURE #MULTISTEP MULTIDERIVATIVE METHODS #POWER-SERIES #STABILITY #MECÂNICA DOS FLUÍDOS COMPUTACIONAL #MATHEMATICS, APPLIED #MATHEMATICS
Tipo

article

original article

publishedVersion