Generators of supersymmetric polynomials in positive characteristic


Autoria(s): Grishkov, A. N.; Marko, F.; Zubkov, A. N.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

07/11/2013

07/11/2013

2012

Resumo

In Kantor and Trishin (1997) [3], Kantor and Trishin described the algebra of polynomial invariants of the adjoint representation of the Lie superalgebra gl(m vertical bar n) and a related algebra A, of what they called pseudosymmetric polynomials over an algebraically closed field K of characteristic zero. The algebra A(s) was investigated earlier by Stembridge (1985) who in [9] called the elements of A(s) supersymmetric polynomials and determined generators of A(s). The case of positive characteristic p of the ground field K has been recently investigated by La Scala and Zubkov (in press) in [6]. We extend their work and give a complete description of generators of polynomial invariants of the adjoint action of the general linear supergroup GL(m vertical bar n) and generators of A(s).

Identificador

Journal of Algebra, San Diego, v. 349, pp. 38-49, 2012

0021-8693

http://www.producao.usp.br/handle/BDPI/43294

10.1016/j.jalgebra.2011.10.022

http://dx.doi.org/10.1016/j.jalgebra.2011.10.022

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

San Diego

Relação

JOURNAL OF ALGEBRA

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #INVARIANTS #SUPERSYMMETRIC POLYNOMIALS #PSEUDOSYMMETRIC POLYNOMIALS #GENERAL LINEAR SUPERGROUP #SCHUR SUPERALGEBRA #MATHEMATICS
Tipo

article

original article

publishedVersion