978 resultados para LIGHT-EMISSION
Growth and characterization of GaInNAs by molecular beam epitaxy using a nitrogen irradiation method
Resumo:
We propose an innovative technique, making use of the In segregation effect, referred as the N irradiation method, to enhance In-N bonding and extend the emission wavelength of GaInNAs quantum wells (QWs). After the formation of a complete In floating layer, the growth is interrupted and N irradiation is initiated. The majority of N atoms are forced to bond with In atoms and their incorporation is regulated independently by the N exposure time and the As pressure. The effect of the N exposure time and As pressure on the N incorporation and the optical quality of GaInNAs QWs were investigated. Anomalous photoluminescence (PL) wavelength red shifts after rapid thermal annealing (RTA) were observed in the N-irradiated samples, whereas a normal GaInNAs sample revealed a blue shift. This method provides an alternative way to extend the emission wavelength of GaInNAs QWs with decent optical quality. We demonstrate light emission at 1546 nm from an 11-nm-thick QW, using this method and the PL intensity is similar to that of a 7-nm-thick GaInNAs QW grown at a reduced rate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
InGaN based light emitting devices (LEDs) with asymmetric coupled quantum wells (AS-QWs) and conventional symmetric coupled quantum wells (CS-QWs) active structures were grown by metal-organic chemical vapor deposition technique. The LEDs with AS-QWs active region show improved light emission intensity and reduced forward voltage compared with LEDs with CS-QWs active region. Based on the electroluminescence measurements and the devices structure analysis, it can be concluded that these improvements are mainly attributed to the efficient hole tunneling through barriers and consequently the uniform distribution of carriers in the AS-QWs. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3254232]
Resumo:
Long wavelength light emission was realized by capping InAs quantum dots (QDs) with short period GaAs/InAs superlattices (SLs) and an InGaAs strain-reducing layer (SRL). The optical properties were systematically investigated by photoluminescence tests. With increasing the periods of SLs, the emission wavelength of InAs QDs shifts from 1.27 to 1.53 mum. We explain the redshift as a result of the increased QD height with the SLs and the reduced strain in the dot caused by InGaAs SRL. (C) 2004 Published by Elsevier Ltd.
Resumo:
Large-scale synthesis of high-quality GaN nano-crystallites has been achieved by direct reaction of a 4:1 molar Ga/Ga2O3 mixture with ammonia at 950degreesC. X-ray diffraction, transmission electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy revealed that the produced GaN nanocrystallites were single hexagonal wurtzite structure with an average particle size around 45 nm. A sharp near band edge emission peak and a blue light emission peak were observed in photoluminescence spectroscopy. The synthesis approach is simple and easy to be commercialized.
Resumo:
A comprehensive two-level numerical model is developed to describe carrier distribution in a quantum-dot laser. Light-emission spectra with different intraband relaxation rates (2ps, 7.5ps and 20ps) are calculated and analysed to investigate the influence of relaxation rates on performance of the quantum-dot laser. The results indicate that fast intraband relaxation favours not only the ground state single mode operation but also the higher injection efficiency.
Resumo:
This paper reviews our work on controlled growth of self-assembled semiconductor nanostructures, and their application in light-emission devices. High-power, long-life quantum dots (QD) lasers emitting at similar to 1 mu m, red-emitting QD lasers, and long-wavelength QD lasers on GaAs substrates have successfully been achieved by optimizing the growth conditions of QDs.
Resumo:
We have demonstrated 1.5 mum light emission from InAs quantum dots (QDs) capped with a thin GaAs layer. The extension of the emission wavelength can be assigned to the large QD height. We also investigate the effect of growth interruption on the PL properties and the shape of InAs QDs fabricated by migration-enhanced growth (MEG). Contrary to expectation, we observed a remarkable blueshift of the emission energy with the growth interruption in MEG mode. Detailed investigations reveal that the blueshift is related to the reduced island height with the growth interruption, which is confirmed by reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) measurement results. Accordingly, the structure changes of the islands are interpreted in terms of thermodynamic and kinetic theories. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Silicon nanocrystals in SiO2 matrix are fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing. The structure and photoluminescence (PL) of the resulting films is investigated as a function of deposition temperature. Drastic improvement of PL efficiency up to 12% is achieved when the deposition temperature is reduced from 250 degreesC to room temperature. Low-temperature deposition is found to result in a high quality final structure of the films in which the silicon nanocrystals are nearly strain-free, and the Si/SiO2 interface sharp. The demonstration of the superior structural and optical properties of the films represents an important step towards the development of silicon-based light emitters. (C) 2002 American Institute of Physics.
Resumo:
(1 1 (2) over bar 0) GaN/InGaN multiple quantum wells (MQWs) were grown on (1 (2) over bar 0 2) sapphire by metal-organic vapor phase epitaxy. The excitation-intensity-dependent photoluminescence (PL) spectrum of these samples was measured, and no peak shift was observed. This phenomenon was attributed to the absence of piezoelectric field (PEF) along the growth orientation of the (1 1 (2) over bar 0) face MQWs. Our experimental results showed that PEF was the main reason causing peak blueshift in excitation-intensity-dependent PL spectrum of (0 0 0 1) InGaN/GaN NIQWs. It was expected that fabricating (1 1 (2) over bar 0) face nitride device should be a method to avoid PEF and get low-threshold, high-quantum-efficiency and stable-emission-wavelength light-emission devices. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Si-based nanomaterials are some new photoeletronic and informational materials developed rapidly in recent years, and they have potential applications in the light emitting devices, e. g. Si light emitting diode, Si laser and integrated Si-based photoelectronics. Among them are nano-scale porous silicon (ps), Si nanocrystalline embedded SiO2 (SiOx, x < 2.0) matrices, Si nanoquantum dot and Si/SiO2 superlattice, etc. At present, there are various indications that if these materials can achieve efficient and stable luminescence, which are photoluminescence (PL) and electroluminescence (EL), it is possible for them to lead to a new informational revolution in the early days of the 21st century. In this article, we will mainly review the progress of study on Si-based nanomaterials in the past ten years. The involved contents are the fabricated methods, structural characterizations and light emitting properties. Finally, we predicate the developed tendency of this field in the following ten years.
Resumo:
Amorphous Sic films are deposited on Si (111) substrates by rf magnetron sputtering and then annealed at 1200 degreesC for different times by a dc self-heating method in a vacuum annealing system. The crystallization of the amorphous Sic is determined by Raman scattering at room temperature and X-ray diffraction. The experimental result indicates that the Sic nanocrystals have formed in the films. The topography of the as-annealed films is characterized by atomic force microscopy. Measurements of photoluminescence of the as-annealed films show blue or violet light emission from the nanocrystalline Sic films and photoluminescence peak shifts to short wavelength side as the annealing time decreases.
Resumo:
A CeO2 film with a thickness of about 80nm was deposited by a mass-analysed low-energy dual ion beam deposition technique on an Si(111) substrate. Reflection high-energy electron diffraction and x-ray diffraction measurements showed that the film is a single crystal. The tetravalent state of Ce in the film was confirmed by x-ray photoelectron spectroscopy measurements, indicating that stoichiometric CeO2 was formed. Violet/blue light emission (379.5 nm) was observed at room temperature, which may be tentatively explained by charge transitions from the 4f band to the valence band of CeO2.
Resumo:
Photoluminescence (PL) and Raman spectra of silicon nanocrystals prepared by Si ion implantion into SiO2 layers on Si substrate have been measured at room temperature. Their dependence on annealing temperature was investigated in detail. The PL peaks observed in the as-implanted sample originate from the defects in SiO2 layers caused by ion implantation. They actually disappear after thermal annealing at 800 degrees C. The PL peak from silicon nanocrystals was observed when thermal annealing temperatures are higher than 900 degrees C. The PL peak is redshifted to 1.7 eV and the intensity reaches maximum at the thermal annealing temperature of 1100 degrees C. The characterized Raman scattering peak of silicon nanocrystals was observed by using a right angle scattering configuration. The Raman signal related to the silicon nanocrystals appears only in the samples annealed at temperature above 900 degrees C. It further proves the formation of silicon nanocrystals in these samples. (C) 2000 American Institute of Physics. [S0021-8979(00)00215-2].
Resumo:
The samples of silicon nanocrystals (nc-Si) were prepared by Si ion implanted into SiO2 layers. Photoluminescence spectra were measured at room temperature and their dependence on thermal annealing was investigated. The experimental results show that PL peaks originate from the defects in SiO2 layers caused by ion implantation when the thermal annealing temperature is lower than 800 C. The PL peak from nc-Si was observed when the thermal annealing temperature was higher than 900 C, and PL intensity reached its maximum at the thermal annealing temperature of 1100 C. As the annealing temperature increases the red shift of PL peak from nc-Si shows the quantum size effect. The characterized Raman scattering peak of nc-Si was observed at the right angle scattering configuration for the first time. It provides further support for the PL measurements.
Resumo:
Nanocrystalline Ge embedded in amorphous silicon dioxide matrix was fabricated by oxidizing hydrogenated amorphous Si/hydrogenated amorphous Ge (a-Si:H/a-Ge:H) multilayers. The structures before and after oxidation were systematically investigated. The orange-green light emission was observed at room temperature and the luminescence peak was located at 2.2 eV. The size dependence in the photoluminescence peak energy was not observed and the luminescence intensity was increased gradually with oxidation time. The origin for this visible light emission is discussed. In contrast to the simple quantum effect model, the surface defect states of nanocrystalline Ge are believed to play an important role in radiative recombination process. (C) 1999 American Institute of Physics. [S0003-6951(99)02425-0].