761 resultados para Benzylic alcohols
Resumo:
Large scale enzymatic resolution of racemic sulcatol 2 has been useful for stereoselective biocatalysis. This reaction was fast and selective, using vinyl acetate as donor of acyl group and lipase from Candida antarctica (CALB) as catalyst. The large scale reaction (5.0 g, 39 mmol) afforded high optical purities for S-(+)-sulcatol 2 and R-(+)-sulcatyl acetate 3, i.e., ee > 99 per cent and good yields (45 per cent) within a short time (40 min). Thermodynamic parameters for the chemoesterification of sulcatol 2 by vinyl acetate were evaluated. The enthalpy and Gibbs free energy values of this reaction were negative, indicating that this process is exothermic and spontaneous which is in agreement with the reaction obtained enzymatically.
Resumo:
Flavor compounds` formation and fermentative parameters of continuous high gravity brewing with yeasts immobilized on spent grains were evaluated at three different temperatures (7, 10 and 15 degrees C). The assays were performed in a bubble column reactor at constant dilution rate (0.05 h(-1)) and total gas flow rate (240 ml/min of CO(2) and 10 ml/min of air), with high-gravity all-malt wort (15 degrees Plato). The results revealed that as the fermentation temperature was increased from 7 to 15 degrees C, the apparent and real degrees of fermentation, rate of extract consumption, ethanol volumetric productivity and consumption of free amino nitrogen (FAN) increased. In addition, beer produced at 15 degrees C presented a higher alcohols to esters ratio (2.2-2.4:1) similar to the optimum values described in the literature. It was thus concluded that primary high-gravity (15 degrees Plato) all-malt wort fermentation by continuous process with yeasts immobilized on spent grains, can be carried out with a good performance at 15 degrees C.
Resumo:
Cheese whey (CW) and deproteinised cheese whey (DCW) were investigated for their suitability as novel substrates for the production of kefir-like beverages. Lactose consumption, ethanol production, as well as organic acids and volatile compounds formation, were determined during CW and DCW fermentation by kefir grains and compared with values obtained during the production of traditional milk kefir. The results showed that kefir grains were able to utilise lactose from CW and DCW and produce similar amounts of ethanol (7.8-8.3 g/l), lactic acid (5.0 g/l) and acetic acid (0.7 g/l) to those obtained during milk fermentation. In addition, the concentration of higher alcohols (2-methyl-1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-propanol, and 1-propanol), ester (ethyl acetate) and aldehyde (acetaldehyde) in cheese whey-based kefir and milk kefir beverages were also produced in similar amounts. Cheese whey and deproteinised cheese whey may therefore serve as substrates for the production of kefir-like beverages similar to milk kefir. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Performance of different immobilized lipases in palm oil biodiesel synthesis. Optimized conditions for palm oil and ethanol enzymatic biodiesel synthesis were determined with different immobilized lipases SiO(2)-PVA-immobilized lipase from Pseudomonas fluorescens and acrylic resin-immobilized lipase, Novozym (R) 435, from Candida antartica, in solvent-free medium. A full factorial design assessed the influence of temperature (42 - 58 degrees C) and ethanol: palm oil (6:1 - 18:1) molar ratio on the transesterification yield. Main effects were adjusted by multiple regression analysis to linear models and the maximum transesterification yield was obtained at 42 degrees C and 18:1 ethanol: palm oil molar ratio. Mathematical models featuring total yield for each immobilized lipase were suitable to describe the experimental results.
Resumo:
The main aim of this work was to produce fruit wines from pulp of gabiroba, cacao, umbu, cupuassu and jaboticaba and characterize them using gas chromatography-mass spectrometry for determination of minor compounds and gas chromatography-flame ionization detection for major compounds. Ninety-nine compounds (C(6) compounds, alcohols, monoterpenic alcohols, monoterpenic oxides, ethyl esters, acetates, volatile phenols, acids, carbonyl compounds, sulfur compounds and sugars) were identified in fruit wines. The typical composition for each fruit wine was evidenced by principal component analysis and Tukey test. The yeast UFLA CA 1162 was efficient in the fermentation of the fruit pulp used in this work. The identification and quantification of the compounds allowed a good characterization of the fruit wines. With our results, we conclude that the use of tropical fruits in the production of fruit wines is a viable alternative that allows the use of harvest surpluses and other underused fruits, resulting in the introduction of new products into the market. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16 degrees Brix with a sucrose solution, and batch fermentations were performed at 22 degrees C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Y(p/s)), biomass (Y(x/s)), glycerol (Y(g/s)) and acetic acid (Y(ac/s)), the volumetric productivity of ethanol (Q(p)), the biomass productivity (P(x)), and the fermentation efficiency (E(f)) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the E(f), Y(p/s), Y(g/s), and Y(x/s) parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 mu g/L), CAT-1 (80,317.01 mu g/L), VR-1 (67,573.99 mu g/L) and S. bayanus CBS 1505 (71,660.32 mu g/L). The highest concentrations of ethyl esters were 454.33 mu g/L, 440.33 mu g/L and 438 mu g/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 mu g/L) and higher alcohols (83,996.33 mu g/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Two screenings of commercial lipases were performed to find a lipase with superior performance for the integrated production of biodiesel and monoglycerides. The first screening was carried out under alcoholysis conditions using ethanol as acyl acceptor to convert triglycerides to their corresponding ethyl esters (biodiesel). The second screening was performed under glycerolysis conditions to yield monoglycerides (MG). All lipases were immobilized on silica-PVA composite by covalent immobilization. The assays were performed using babassu oil and alcohols (ethanol or glycerol) in solvent free systems. For both substrates, lipase from Burkholderia cepacia (lipase PS) was found to be the most suitable enzyme to attain satisfactory yields. To further improve the process, the Response Surface Methodology (RSM) was used to determine the optima operating conditions for each biotransformation. For biodiesel production, the highest transesterification yield (>98%) was achieved within 48 h reaction at 39 degrees C using an oil-to-ethanol molar ratio of 1:7. For MG production, optima conditions corresponded to oil-to-glycerol molar ratio of 1: 15 at 55 degrees C, yielding 25 wt.% MG in 6 h reaction. These results show the potential of B. cepacia lipase to catalyze both reactions and the feasibility to consider an integrated approach for biodiesel and MG production. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.
Resumo:
Due to the low chemical control effectiveness of citrus black spot, caused by the fungus Guignardia citricarpa at postharvest, and to the search for alternative control methods, this study aimed to evaluate the in vitro effect of volatile organic compounds (VOCs), produced by yeast Saccharomyces cerevisiae, on G. citricarpa. It was observed that the yeast strains evaluated acted as antagonists by VOC production, whose maximum inhibitory capacity was as high as 87.2%. The presence of fermentable carbon sources in the medium was essential for the bioactive VOC production by the yeast. The analysis of VOCs produced in PDA medium by SPME-GC-MS indicated the presence of high quantities of alcohols as well as esters. An artificial VOC mixture prepared on the basis of the composition of the VOCs mimicked the inhibitory effects of the natural VOCs released by S. cerevisiae. Thus, the VOCs produced by the yeast or the artificial mixtures can be a promising control method for citrus black spot or others postharvest diseases.
Resumo:
The synthesis of new chiral amino alcohols by Heck arylation of an enecarbamate is described. These compounds were used as chiral ligands for the catalytic asymmetric arylation of aldehydes and can be easily recovered. Chiral, nonracemic diarylmethanols were obtained in high yields and enantioselectivities.
Resumo:
The oxidation of geminal biaryl ethenes 3 and 1,3-enynes 5 using m-chloroperbenzoic acid in dichloromethane at room temperature presents a catalyst-free approach for the synthesis of functionalized benzophenones 4 and ynones 6, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Disproportionation reactions take place in solution of (diacetoxyiodo)benzene (DIB) in acetonitrile in the presence of water, giving iodine(V) and iodine(l) species. This redox reaction is accelerated by the presence of water and by increasing the temperature. Several species of the solution of DIB were identified by high-resolution ESI-MS/MS, which allowed the elucidation of the mechanisms of disproportionation for DIB in gas phase and in solution. Key species in the process are the dimers [PhI(CH)OlPh](+) at m/z 440.8864, [PhI(OAc)OlPh](+) at m/z 482.8947, and [PhI(O)(OAc)OlPh](+) at m/z 498.8887. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to evaluate the chemical composition of Baccharis dracunculifolia essential oil and the water soluble oil obtained by steam distillation that were analyzed by GC and GUMS. in the first hour of distillation, B. dracunculifolia aerial parts yielded 0.08% oil and in the second hour, 0.27%. The oil recovered from the distillate water yielded 0.18 g/L in the first hour and 0.44 g/L in the second hour of distillation. The main volatile compounds identified in the distillate water were aromatic compounds and sesquiterpene alcohols.
Resumo:
Considering the belief that natural lipids are safer for topical applications and that carotenoids are able to protect cells against photooxidative damage, we have investigated whether topical creams and lotions, produced with Buriti oil and commercial surfactants, can exert photoprotective effect against UVA and UVB irradiation on keratinocytes and fibroblasts. Cell treatment was divided into two steps, prior and after exposition to 30 min of UVA plus UVB radiation or to 60 min of UVA radiation. Emulsions prepared with ethoxylated fatty alcohols as surfactants and containing alpha-tocopherol caused phototoxic damage to the cells, especially when applied prior to UV exposure. Damage reported was due to prooxidant activity and phototoxic effect of the surfactant. Emulsions prepared with Sorbitan Monooleate and PEG-40 castor oil and containing panthenol as active ingredient, were able to reduce the damages caused by radiation when compared to non-treated cells. When the two cell lines used in the study were compared, keratinocytes showed an increase in cell viability higher than fibroblasts. The Buriti oil emulsions could be considered potential vehicles to transport antioxidants precursors and also be used as adjuvant in sun protection, especially in after sun formulations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A Callyspongia sp. collected by SCUBA off Barwon Heads, Australia, has afforded two new polyacetylenic lipids, callyspongynes A and B, the structures of which were assigned by spectroscopic analysis and chemical derivatization.