983 resultados para ASSEMBLED MOLECULAR NANOSTRUCTURE
Resumo:
Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
In this paper, we investigated the self-assembled quantum dots formed on (100) and (N11)B (N = 2, 3, 4, 5) InP substrates by molecular beam epitaxy (MBE). Two kinds of ternary QDs (In0.9Ga0.1As and In0.9Al0.1As QDs) are grown on the above substrates; Transmission electron microscopy (TEM) and photoluminescence (PL) results confirm QDs formation for all samples. The PL spectra reveal obvious differences in integral luminescence, peak position, full-width at half-maximum and peak shape between different oriented surfaces. Highest PL integral intensity is observed from QDs on (411)B surfaces, which shows a potential for improving the optical properties of QDs by using high-index surface. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.
Resumo:
The growth of ordered self-assembled nanoislands on stepped substrates is studied systematically by kinetic Monte Carlo simulations. As the terrace width is small, the formation of nanoislands is confined in the steps and nanoislands ordered in lines or nanowires can be obtained. The Schwoebel barrier at the step edges has a great influence on the evolution of both the size and space distributions of the islands. When the terrace width is relatively large, self-ordering of nanoislands in the center regions of the terraces happens. An unexpected trend of the nanoisland self-ordering is found as the deposition thickness is larger than 0.2 ML, which can be related to the attractive migrations between nearby islands.
Resumo:
Real-space self-consistent field theory (SCFT) is employed to study the effect of solvent molecular size on the self-assembly of amphiphilic diblock copolymer in selective solvent. The phase diagrams in wide ranges of interaction parameters and solvent molecular size were obtained in present study. The results indicate that the solvent molecular size is a key factor that determines the self-assembly of amphiphilic diblock copolymer. The self-assembled morphology changes from circle-like micelle to line-like micelle, then to loop-like micelle by decreasing the solvent molecular size in a wide range of solvent selectivity. We analyze and discuss this change in terms of the solvent solubility and the entropy contribution.
Resumo:
A multinary molecular nanocluster, in which a T3 supertetrahedral [Sn4Ga4Zn2Se20](8-) core was neutralized and covalently terminated by four [(TEPA)Mn](2+) (TEPA = tetraethylenepentamine) metal complexes, was synthesized and characterized. The cluster is assembled into, through hydrogen bonding and van de Waals forces, a superlattice that is chemically stable and free of strong covalent coupling. The four different cations were distributed within the cluster in such a manner that both the local charge balance and global charge compensation by the metal complex could be satisfied.
Resumo:
The charge transport mechanism of oligo(p-phenylene ethynylene)s with lengths ranging from 0.98 to 5.11 nm was investigated using modified scanning tunneling microscopy break junction and conducting probe atomic force microscopy methods. The methods were based on observing the length dependence of molecular resistance at single molecule level and the current-voltage characteristics in a wide length distribution. An intrinsic transition from tunneling to hopping charge transport mechanism was observed near 2.75 nm. A new transitional zone was observed in the long length molecular wires compared to short ones. This was not a simple transition between direct tunneling and field emission, which may provide new insights into transport mechanism investigations. Theoretical calculations provided an essential explanation for these phenomena in terms of molecular electronic structures.
Resumo:
We reported a simple method to synthesize gold nanoparticles (NPs) by photoreducing HAuCl4 in acetic acid solution in the presence of type I collagen. It was found that the collagen takes an important role in the formation of gold NPs. The introduction of collagen made the shape of the synthesized gold nanocrystals change from triangular and hexangular gold nanoplates to size-uniform NPs. On the other hand, thanks to the special characters of collagen molecules, such as its linear nanostructure, are positively charged when the pH < 7, and the excellent self-assembly ability, photoreduced gold NPs were assembled onto the collagen chains and formed gold NPs films and networks. A typical probe molecule, 4-aminothiophenol, was used to test the surface-enhanced Raman scattering activity of these gold NPs films and networks and the results indicated good Raman activity on these substrates.
Resumo:
It was studied that the nanostructure formed on a gold surface via a simple oxidation-reduction cycles (ORC) in 0.1 M KCl containing Ru(bpy)(3)(2+) with different concentrations. Atomic force microscopy (AFM) and energy-dispersed spectroscopy (EDS) were used to characterize the nanostructure formed on the gold surface. Sweep-step voltammetry and corresponding electroluminescence (ECL) response, in situ electrochemical quartz crystal microbalance (EQCM) measurement were used to monitor the ORC. procedure. It was found that the surface structure became more uniform in the presence of Ru(bpy)(3)(2+), and the surface roughness was decreasing with the increasing of Ru(bpY)(3)(2+) concentration, suggesting a simple and effective method to control the formation of nanostructure on the gold surface.
Resumo:
Four individual quadruplexes, which are self-assembled in ammonium acetate solution from telomeric sequences of closely related DNA strands - d(G(4)T(4)G(4)), d(G(3)T(4)G(4)), d(G(3)T(4)G(3)), and d(G(4)T(4)G(3)) - have been detected in the gas phase using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The bimolecular quadruplexes associate with the same number of NH4+ in the gas phase as NMR shows that they do in solution. The quadruplex structures formed in solution are maintained in the gas phase. Furthermore, the mass spectra show that the bimolecular quadruplexes generated by the strands d(G(3)T(4)G(3)) and d(G(4)T(4)G(3)) are unstable, being converted into trimolecular and tetramolecular structures with increasing concentrations of NH4+ in the solution. Circular dichroism (CD) spectra reveal structural changes during the process of strand stoichiometric transitions, in which the relative orientation of strands in the quadruplexes changes from an antiparallel to a parallel arrangement. Such changes were observed for the strand d(G(4)T(4)G(3)), but not for the strand d(G(3)T(4)G(3)). The present work provides a significant insight into the formation of various DNA quadruplexes, especially the higher-order species.
Resumo:
Supramolecular organized multilayers were constructed by multiwalled carbon nanotubes modified with ferrocene-derivatized poly(allylamine) redox polymer and glucose oxidase by electrostatic self-assembly. From the analysis of voltammetric signals and fluorescence results, a linear increment of the coverage of enzyme per bilayer was estimated, which demonstrated that the multilayer is constructed in a spatially ordered manner. The cyclic voltammograms obtained from the indium tin oxide (ITO) electrodes coated by the (Fc-PAH@CNT/GOx)(n) multilayers revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers; that is, the sensitivity is tunable by controlling the number of bilayers associated with ITO electrodes. The incorporation of redox-polymer-functionalized carbon nanotubes (CNT) into enzyme films resulted in a 6-10-fold increase in the glucose electrocatalytic current; the bimolecular rate constant of FADH(2) oxidation (wiring efficiency) was increased up to 12-fold. Impedance spectroscopy data have yielded the electron diffusion coefficient (D-e) of this nanostructure to be over 10(-8) cm(2) s(-1), which is typically higher than those systems without CNT by at least a factor of 10, indicating that electron transport in the new supramolecular architecture was enhanced by communication of the redox active site of enzyme, redox polymer, and CNT.
Resumo:
We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.
Resumo:
Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.
Resumo:
The effects of the molecular weight of polystyrene (PS) component on the phase separation of PS/poly(4-vinylpyridine) (PS/P4VP) blend films on homogeneous alkanethiol self-assembled monolayer (SAM) and heterogeneous SAM/Au substrates have been investigated by means of atomic force microscopy (AFM). For the PS (22.4k)/P4VP (60k) system, owing to the molecular weight of PS component is relatively small, the well-aligned PS and P4VP stripes with good thermal stability are directed by the patterned SAM/Au surfaces. With the increase of the molecular weight of PS component (for the PS (582k)/P4VP (60k) system), the diffusion of P4VP is hindered by the high viscosity of PS during the fast spin-coating process. The phase separation behavior of PS/P4VP on the SAM/Au patterned substrates is similar to that on the homoueneous SAM and cannot be easily directed by the patterned SAM surfaces even though the characteristic length of the lateral domain morphology is commensurate with the stripe width.