986 resultados para strained quantum well


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel type of integrated InGaAsP superluminescent light source was fabricated based on the tilted ridge-waveguide structure with selective-area quantum well (QW) intermixing. The bandgap structure along the length of the device was modified by impurity free vacancy diffusion QW intermixing, The spectral width was broadened from the 16 nm of the normal devices to 37 nm of the QW intermixing enhanced devices at the same output power level. High superluminescent power (210 mW) was obtained under pulsed conditions with a spectral width of 37 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of SiO2 encapsulation and rapid thermal annealing on the optical properties of a GaNAs/GaAs single quantum well (SQW) are studied by low-temperature photoluminescence (LTPL). After annealing at 800degreesC for 30s, a blueshift of the LTPL peak energy for the SiO2-capped region is 25meV and that for the bare region is 0.8meV. The results can attribute to the nitrogen reorganization in the GaNAs/GaAs SQW. It is also shown that the nitrogen reorganization can be obviously enhanced by SiO2 cap-layer. A simple model is used to describe the SiO2-enhanced blueshift of the LTPL peak energy. The estimated activation energy of the N atomic reorganization for the samples annealing with and without SiO2 cap-layer are 2.9eV and 3.1eV, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from the growth of high-quality 1.3 mu m GaInNAs/GaAs quantum well (QW), the QW emission wavelength has been extended up to 1.55 mu m by a combination of lowering growth rate, using GaNAs barriers and incorporating some amount of Sb. The photoluminescence properties of 1.5 mu m range GaInNAsSb/GaNAs QWs are quite comparable to the 1.3 mu m QWs, revealing positive effect of Sb on improving the optical quality of the QWs. A 1.59 mu m lasing of a GaInNAsSb/GaNAs single-QW laser diode is obtained under continuous current injection at room temperature. The threshold current density is 2.6 kA/cm(2) with as-cleaved facet mirrors. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved photoluminescence (PL) of sub-monolayer (SML) InGaAs/GaAs quantum-dot-quantum-well heterostructures was measured at 5 K for the first time. The radiative lifetime of SML quantum dots (QDs) increases from 500 ps to 800 ps with the increase of the size of QDs, which is related to the small confinement energy of the excitons inside SML QDs and the exciton transfer from smaller QDs to larger ones through tunneling. The rise time of quantum-dot state PL signal strongly depends on the excitation power density. At low excitation power density, the rise time is about 35 ps, the mechanism of carrier capture is dominated by the emission of longitudinal-optical phonons. At high excitation power density, the rise time decreases as the excitation density increases, and Auger process plays an important role in the carrier capture. These results are very useful for understanding the working properties of sub-monolayer quantum-dot devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified self-consistent method is introduced for the design of AlxGa1-xN/GaN step quantum well (SQW) with the position and energy-dependent effective mass. The effects of nonparabolicity are included. It is shown that the nonparabolicity effect is minute for the lowest subband energy level and grows in size for the higher subband states. The effects of nonparabolicity have significant influence on the transition energies and the oscillator strengths and should be taken into account in the investigation of the optical transitions. The strong asymmetric property introduced by the step quantum well magnifies the weak intersubband transition from the ground state to the third state (1 -> 3). It is shown that in an appropriate scope, the intersubband transition (1 -> 3) has the comparable oscillator strength with transition from the ground state to the second one (1 -> 2), which suggests the possible application of the two-color photodetectors. The results of this work should provide useful guidance for the design of optically pumped asymmetric quantum well lasers and quantum well infrared photodetectors (QWIPs). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ridge laser diode monolithically integrated with a buried-ridge-structure dual-waveguide spot-size converter operating at 1.58 mu m is successfully fabricated by means of low-energy ion implantation quantum well intermixing and asymmetric twin waveguide technology. The passive waveguide is optically combined with a laterally tapered active core to control the mode size. The devices emit in a single transverse and quasi single longitudinal mode with a side mode suppression ratio of 40.0dB although no grating is fabricated in the LD region. The threshold current is 50 mA. The beam divergence angles in the horizontal and vertical directions are as small as 7.3 degrees x 18.0 degrees, respectively, resulting in 3.0dB coupling loss With a cleaved single-mode optical fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence study of (GaAs1-xSbx/InyGa1-yAs)/GaAs bilayer quantum wells (BQWs) grown by molecular beam epitaxy (MBE) were carried out. Temperature and excitation power dependent photoluminescence (PL) study indicated that the band alignment of the BQWs is type - II. The origin of the double-peak luminescence was discussed. Under optimized growth conditions, the PL emission wavelength from the BQWs has been extend up to 1.31 mu m with a single peak at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have calculated the photoelectric response in a specially designed double barrier structure. It has been verilied that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-consistent solution of conduction band profile and subband energies for AlxGa1-xN-GaN quantum well is presented by solving the Schrodinger and Poisson equations. A new method is introduced to deal with the accumulation of the immobile charges at the AlxGa1-xN-GaN interface caused by spontaneous and piezoelectric polarization in the process of solving the Poisson equation. The effect of spontaneous and piezoelectric polarization is taken into account in the calculation. It also includes the effect of exchange-correlation to the one electron potential on the Coulomb interaction. Our analysis is based on the one electron effective-mass approximation and charge conservation condition. Based on this model, the electron wave functions and the conduction band structure are derived. We calculate the intersubband transition wavelength lambda(21) for different Al molar fraction of barrier and thickness of well. The calculated result can fit to the experimental data well. The dependence of the absorption coefficient a on the well width and the doping density is also investigated theoretically. (C) 2004 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a specially- designed three-barrier-double-well tunneling structure, electron injecting from the emitter in combination with escaping through a resonant-tunneling structure were used to adjust and control the filling of electrons in different subbands. It was observed that the occupation in the first-excited electron state can result in a suppression to quantum confinement Stark effect. Moreover, at very low bias, a series of intrigue photoluminescence peaks appeared as a small quantity of excess electron was filled in the ground state of the quantum well, that cannot be explained by the theory of hand-to-hand transition in the framework of single electron picture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have observed the weak antilocalization (WAL) and beating SdH oscillation through magnetotransport measurements performed on a heavily delta-doped In0.52Al0.48As/In0.53Ga0.47As/In0.5Al0.48As single quantum well in an applied magnetic field up to 13 T and a temperature at 1.5 K. Both effects are caused by the strong Rashba spin-orbit (SO) coupling due to high structure inversion asymmetry (SIA). The Rashba SO coupling constant alpha and zerotield spin splitting Delta(0) are estimated and the obtained values are consistent from different analysis for this sample. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electroabsorption modulator using the intrastep quantum well (IQW) active region is fabricated for optical network systems. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio elliciency 10 dB/V and low capacitance (< 0.42 pF), with which an ultra high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for multi-quantum well EAMs without heat sinks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an n-type Si1-xGex/Ge (x >= 0.85) quantum cascade (QC) structure utilizing a deep Ge quantum well for electrons at the Gamma point is proposed. Based on linear interpolation, a conduction band offset at the Gamma point in a Si1-xGex/Ge ( x >= 0.85) heterostructure is presented, which is suitable for designing a QC laser. This approach has the advantages of a large conduction band offset at the Gamma point, a low lattice mismatch between the Si1-xGex/Ge ( x >= 0.85) active layers and the Si1-yGey ( y > x) virtual substrate, a small electron effective mass in the Gamma band, simple conduction energy band structures and a simple phonon scattering mechanism in the Ge quantum well. The theory predicts that if high-energy electrons are continuously injected into the Gamma band, a quasi-equilibrium distribution of electrons between the Gamma and L bands can be reached and held, i.e., electrons with a certain density will be kept in the Gamma band. This result is supported by the intervalley scattering experiments. In n-type Si1-xGex/Ge ( x >= 0.85) QC structures, population inversion between the laser's upper and lower levels is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on double/single-barrier-doped In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well samples from 1.5 to 60 K in an applied magnetic field up to 13 T. Beating Shubnikov-de Haas oscillation is observed for the symmetrically double-barrier-doped sample and demonstrated due to a symmetric state and an antisymmetric state confined in two coupled self-consistent potential wells in the single quantum well. The energy separation between the symmetric and the antisymmetric states for the double-barrier-doped sample is extracted from experimental data, which is consistent with calculation. For the single-barrier-doped sample, only beating related to magneto-intersubband scattering shows up. The pesudospin property of the symmetrically double-barrier-doped single quantum well shows that it is a good candidate for fabricating quantum transistors. (c) 2007 Elsevier Ltd. All rights reserved.