968 resultados para order estimation
Resumo:
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The issue of smoothing in kriging has been addressed either by estimation or simulation. The solution via estimation calls for postprocessing kriging estimates in order to correct the smoothing effect. Stochastic simulation provides equiprobable images presenting no smoothing and reproducing the covariance model. Consequently, these images reproduce both the sample histogram and the sample semivariogram. However, there is still a problem, which is the lack of local accuracy of simulated images. In this paper, a postprocessing algorithm for correcting the smoothing effect of ordinary kriging estimates is compared with sequential Gaussian simulation realizations. Based on samples drawn from exhaustive data sets, the postprocessing algorithm is shown to be superior to any individual simulation realization yet, at the expense of providing one deterministic estimate of the random function.
Resumo:
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We introduce in this paper the class of linear models with first-order autoregressive elliptical errors. The score functions and the Fisher information matrices are derived for the parameters of interest and an iterative process is proposed for the parameter estimation. Some robustness aspects of the maximum likelihood estimates are discussed. The normal curvatures of local influence are also derived for some usual perturbation schemes whereas diagnostic graphics to assess the sensitivity of the maximum likelihood estimates are proposed. The methodology is applied to analyse the daily log excess return on the Microsoft whose empirical distributions appear to have AR(1) and heavy-tailed errors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step. The key difference is that we do not impose any parametric restriction on the nuisance functions that are estimated in a first stage, but retain a fully nonparametric model instead. We call these estimators semiparametric doubly robust estimators (SDREs), and show that they possess superior theoretical and practical properties compared to generic semiparametric two-step estimators. In particular, our estimators have substantially smaller first-order bias, allow for a wider range of nonparametric first-stage estimates, rate-optimal choices of smoothing parameters and data-driven estimates thereof, and their stochastic behavior can be well-approximated by classical first-order asymptotics. SDREs exist for a wide range of parameters of interest, particularly in semiparametric missing data and causal inference models. We illustrate our method with a simulation exercise.
Resumo:
The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction. Leaf area is often related to plant growth, development, physiology and yield. Many non-destructive models have been proposed for leaf area estimation of several plant genotypes, demonstrating that leaf length, leaf width and leaf area are closely correlated. Thus, the objective of our study was to develop a reliable model for leaf area estimation from linear measurements of leaf dimensions for citrus genotypes. Materials and methods. Leaves of citrus genotypes were harvested, and their dimensions (length, width and area) were measured. Values of leaf area were regressed against length, width, the square of length, the square of width and the product (length x width). The most accurate equations, either linear or second-order polynomial, were regressed again with a new data set; then the most reliable equation was defined. Results and discussion. The first analysis showed that the variables length, width and the square of length gave better results in second-order polynomial equations, while the linear equations were more suitable and accurate when the width and the product (length x width) were used. When these equations were regressed with the new data set, the coefficient of determination (R(2)) and the agreement index 'd' were higher for the one that used the variable product (length x width), while the Mean Absolute Percentage Error was lower. Conclusion. The product of the simple leaf dimensions (length x width) can provide a reliable and simple non-destructive model for leaf area estimation across citrus genotypes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The main target here is to determine the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms implemented through sequential Givens rotations as a method of estimation, with the aim of improving the performance of the orbit estimation process and, at the same time, minimizing the computational procedure cost. Geopotential perturbations up to high order and direct solar radiation pressure were taken into account. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. An application has been done, using real data from the Topex/Poseidon satellite, whose ephemeris is available at Internet. The best accuracy obtained in position was smaller than 5 meters for short period (2 hours) and smaller than 28 meters for long period (24 hours) orbit determination. In both cases, the perturbations mentioned before were taken into consideration and the analysis occurred without selective availability on the signals measurements.
Resumo:
A procedure for calculation of refrigerant mass flow rate is implemented in the distributed numerical model to simulate the flow in finned-tube coil dry-expansion evaporators, usually found in refrigeration and air-conditioning systems. Two-phase refrigerant flow inside the tubes is assumed to be one-dimensional, unsteady, and homogeneous. In themodel the effects of refrigerant pressure drop and the moisture condensation from the air flowing over the external surface of the tubes are considered. The results obtained are the distributions of refrigerant velocity, temperature and void fraction, tube-wall temperature, air temperature, and absolute humidity. The finite volume method is used to discretize the governing equations. Additionally, given the operation conditions and the geometric parameters, the model allows the calculation of the refrigerant mass flow rate. The value of mass flow rate is computed using the process of parameter estimation with the minimization method of Levenberg-Marquardt minimization. In order to validate the developed model, the obtained results using HFC-134a as a refrigerant are compared with available data from the literature.
Resumo:
A partir de perfis populacionais experimentais de linhagens do díptero forídeo Megaselia scalaris, foi determinado o número mínimo de perfis amostrais que devem ser repetidos, via processo de simulação bootstrap, para se ter uma estimativa confiável do perfil médio populacional e apresentar estimativas do erro-padrão como medida da precisão das simulações realizadas. Os dados originais são provenientes de populações experimentais fundadas com as linhagens SR e R4, com três réplicas cada, e que foram mantidas por 33 semanas pela técnica da transferência seriada em câmara de temperatura constante (25 ± 1,0ºC). A variável usada foi tamanho populacional e o modelo adotado para cada perfíl foi o de um processo estocástico estacionário. Por meio das simulações, os perfis de três populações experimentais foram amplificados, determinando-se, dessa forma, o tamanho mínimo de amostra. Fixado o tamanho de amostra, simulações bootstrap foram realizadas para construção de intervalos de confiança e comparação dos perfis médios populacionais das duas linhagens. Os resultados mostram que com o tamanho de amostra igual a 50 inicia-se o processo de estabilização dos valores médios.