On estimation and influence diagnostics for the Grubbs` model under heavy-tailed distributions
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved. FONDECYT FONDECYT[11075071] FONDECYT FONDECYT[1070919] CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP, Brazil |
Identificador |
COMPUTATIONAL STATISTICS & DATA ANALYSIS, v.53, n.4, p.1249-1263, 2009 0167-9473 http://producao.usp.br/handle/BDPI/30505 10.1016/j.csda.2008.10.034 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Computational Statistics & Data Analysis |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #LINEAR STRUCTURAL RELATIONSHIPS #COMPARATIVE CALIBRATION MODELS #MIXED-EFFECTS MODELS #LOCAL INFLUENCE #INCOMPLETE-DATA #MAXIMUM-LIKELIHOOD #MEASURING DEVICES #SCALE MIXTURES #T-DISTRIBUTION #EM ALGORITHM #Computer Science, Interdisciplinary Applications #Statistics & Probability |
Tipo |
article original article publishedVersion |