Improved maximum-likelihood estimation in a regression model with general parametrization
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP (Brazil) |
Identificador |
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, v.81, n.8, p.1027-1037, 2011 0094-9655 http://producao.usp.br/handle/BDPI/30769 10.1080/00949651003639196 |
Idioma(s) |
eng |
Publicador |
TAYLOR & FRANCIS LTD |
Relação |
Journal of Statistical Computation and Simulation |
Direitos |
restrictedAccess Copyright TAYLOR & FRANCIS LTD |
Palavras-Chave | #bias correction #bootstrap #errors-in-variables model #maximum-likelihood estimation #multivariate regression #HETEROSCEDASTIC MEASUREMENT ERRORS #BIAS CORRECTION #NONLINEAR-REGRESSION #BOOTSTRAP #VARIABLES #Computer Science, Interdisciplinary Applications #Statistics & Probability |
Tipo |
article original article publishedVersion |