Improved maximum-likelihood estimation in a regression model with general parametrization


Autoria(s): LEMONTE, Artur J.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP (Brazil)

Identificador

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, v.81, n.8, p.1027-1037, 2011

0094-9655

http://producao.usp.br/handle/BDPI/30769

10.1080/00949651003639196

http://dx.doi.org/10.1080/00949651003639196

Idioma(s)

eng

Publicador

TAYLOR & FRANCIS LTD

Relação

Journal of Statistical Computation and Simulation

Direitos

restrictedAccess

Copyright TAYLOR & FRANCIS LTD

Palavras-Chave #bias correction #bootstrap #errors-in-variables model #maximum-likelihood estimation #multivariate regression #HETEROSCEDASTIC MEASUREMENT ERRORS #BIAS CORRECTION #NONLINEAR-REGRESSION #BOOTSTRAP #VARIABLES #Computer Science, Interdisciplinary Applications #Statistics & Probability
Tipo

article

original article

publishedVersion