Bayesian density estimation using Skew Student-t-Normal mixtures


Autoria(s): CABRAL, Celso Romulo Barbosa; BOLFARINE, Heleno; PEREIRA, Jose Raimundo Gomes
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved.

CNPq - Brazil

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

COMPUTATIONAL STATISTICS & DATA ANALYSIS, v.52, n.12, p.5075-5090, 2008

0167-9473

http://producao.usp.br/handle/BDPI/30527

10.1016/j.csda.2008.05.003

http://dx.doi.org/10.1016/j.csda.2008.05.003

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Computational Statistics & Data Analysis

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #MONTE-CARLO SAMPLERS #DISTRIBUTIONS #MODELS #INFERENCE #Computer Science, Interdisciplinary Applications #Statistics & Probability
Tipo

article

original article

publishedVersion