Bayesian density estimation using Skew Student-t-Normal mixtures
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved. CNPq - Brazil Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
COMPUTATIONAL STATISTICS & DATA ANALYSIS, v.52, n.12, p.5075-5090, 2008 0167-9473 http://producao.usp.br/handle/BDPI/30527 10.1016/j.csda.2008.05.003 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Computational Statistics & Data Analysis |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #MONTE-CARLO SAMPLERS #DISTRIBUTIONS #MODELS #INFERENCE #Computer Science, Interdisciplinary Applications #Statistics & Probability |
Tipo |
article original article publishedVersion |