808 resultados para Banach spaces -- Radon-Nikodym property
Resumo:
Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2.
Resumo:
Given a transitive Anosov diffeomorphism on a closed manifold it is known that, for smooth enough observables, the system is mixing w.r.t. the measure of maximal entropy. Therefore, it makes sense to investigate the speed of decay of correlations and to look for the so-called Ruelle-Pollicott resonances, in order to determine a complete asymptotics for the decay of correlations. In this thesis we are able to find the first terms of that asymptotics and to prove an estimate for the speed of decaying of correlations. The proof is based on a surprising connection between the action of a transfer operator on suitable anisotropic Banach spaces of currents and the action induced by the Anosov map on the de Rham cohomology.
Resumo:
We prove that if E is a subset of a Banach space whose density is of measure zero and such that (E, weak) is a paracompact space, then (E, weak) is a Radon space of type (F ) under very general conditions.
Resumo:
In the last few years, a need to account for molecular flexibility in drug-design methodologies has emerged, even if the dynamic behavior of molecular properties is seldom made explicit. For a flexible molecule, it is indeed possible to compute different values for a given conformation-dependent property and the ensemble of such values defines a property space that can be used to describe its molecular variability; a most representative case is the lipophilicity space. In this review, a number of applications of lipophilicity space and other property spaces are presented, showing that this concept can be fruitfully exploited: to investigate the constraints exerted by media of different levels of structural organization, to examine processes of molecular recognition and binding at an atomic level, to derive informative descriptors to be included in quantitative structure--activity relationships and to analyze protein simulations extracting the relevant information. Much molecular information is neglected in the descriptors used by medicinal chemists, while the concept of property space can fill this gap by accounting for the often-disregarded dynamic behavior of both small ligands and biomacromolecules. Property space also introduces some innovative concepts such as molecular sensitivity and plasticity, which appear best suited to explore the ability of a molecule to adapt itself to the environment variously modulating its property and conformational profiles. Globally, such concepts can enhance our understanding of biological phenomena providing fruitful descriptors in drug-design and pharmaceutical sciences.
Resumo:
∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998
Resumo:
It is proved that a Banach space X has the Lyapunov property if its subspace Y and the quotient space X/Y have it.
Resumo:
Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - В съобщението е продължено изследването на понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако co-хомогенното пространство X съдържа Gδ -гъсто Московско подпространство, тогава X е Московско пространство.
Resumo:
This paper continues the study of spectral synthesis and the topologies τ∞ and τr on the ideal space of a Banach algebra, concentrating on the class of Banach *-algebras, and in particular on L1-group algebras. It is shown that if a group G is a finite extension of an abelian group then τr is Hausdorff on the ideal space of L1(G) if and only if L1(G) has spectral synthesis, which in turn is equivalent to G being compact. The result is applied to nilpotent groups, [FD]−-groups, and Moore groups. An example is given of a non-compact, non-abelian group G for which L1(G) has spectral synthesis. It is also shown that if G is a non-discrete group then τr is not Hausdorff on the ideal lattice of the Fourier algebra A(G).
Resumo:
There are two main aims of the paper. The first one is to extend the criterion for the precompactness of sets in Banach function spaces to the setting of quasi-Banach function spaces. The second one is to extend the criterion for the precompactness of sets in the Lebesgue spaces $L_p(\Rn)$, $1 \leq p < \infty$, to the so-called power quasi-Banach function spaces.
These criteria are applied to establish compact embeddings of abstract Besov spaces into quasi-Banach function spaces. The results are illustrated on embeddings of Besov spaces $B^s_{p,q}(\Rn)$, $0spaces.
Resumo:
Given a prime power q, define c (q) as the minimum cardinality of a subset H of F 3 q which satisfies the following property: every vector in this space di ff ers in at most 1 coordinate from a multiple of a vector in H. In this work, we introduce two extremal problems in combinatorial number theory aiming to discuss a known connection between the corresponding coverings and sum-free sets. Also, we provide several bounds on these maps which yield new classes of coverings, improving the previous upper bound on c (q)
Resumo:
We show that the product of a subparacompact C-scattered space and a Lindelöf D-space is D. In addition, we show that every regular locally D-space which is the union of a finite collection of subparacompact spaces and metacompact spaces has the D-property. Also, we extend this result from the class of locally D-spaces to the wider class of D-scattered spaces. All the results are shown in a direct way.
Resumo:
The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).
Resumo:
Neoliberalism is having a significant and global impact on political, social and economic life across spaces. This work illustrates how neoliberalism is attempting to change the ways in which the urban poor - particularly those that participate in street vending - use urban spaces in Lima, Peru. Using municipal policies, newspaper articles and local academic texts I argue that there is a changing marginality in Lima that is being experienced by street vendors, and currently in los canas of Lima. In particular, I discuss formalization, a neoliberal strategy in street vending policy, which is used with eradication and social assistance strategies in attempts to re-regulate street vendors.