Compactness in quasi-Banach function spaces and applications to compact embeddings of Besov-type spaces
Data(s) |
25/07/2016
23/06/2016
|
---|---|
Resumo |
There are two main aims of the paper. The first one is to extend the criterion for the precompactness of sets in Banach function spaces to the setting of quasi-Banach function spaces. The second one is to extend the criterion for the precompactness of sets in the Lebesgue spaces $L_p(\Rn)$, $1 \leq p < \infty$, to the so-called power quasi-Banach function spaces. These criteria are applied to establish compact embeddings of abstract Besov spaces into quasi-Banach function spaces. The results are illustrated on embeddings of Besov spaces $B^s_{p,q}(\Rn)$, $0<s<1$, $0<p,q\leq \infty$, into Lorentz-type spaces. |
Identificador |
0308-2105 |
Idioma(s) |
eng |
Publicador |
Cambridge University Press; Royal Society of Edinburgh |
Relação |
FCT - UID/MAT/04106/2013 Grant Agency of the Czech Republic - P 201 13-14743S http://dx.doi.org/10.1017/S0308210515000761 |
Direitos |
restrictedAccess |
Palavras-Chave | #Quasi-Banach function space #Compactness #Compact embedding #Absolute continuity #Besov space #Lorentz space |
Tipo |
article |