Strictly singular operators in pairs of L (p) space


Autoria(s): Semenov, E.M.; Tradacete, P.; Hernández, Francisco L.
Data(s)

2016

Resumo

Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2.

Formato

application/pdf

Identificador

http://eprints.ucm.es/39717/1/HerRod09.pdf

Idioma(s)

en

Publicador

Springer

Relação

http://eprints.ucm.es/39717/

http://link.springer.com/article/10.1134/S1064562416040281

http://dx.doi.org/10.1134/S1064562416040281

MTM2012-31286

MTM2013-40985

14-01-00141-a

Direitos

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Análisis matemático
Tipo

info:eu-repo/semantics/article

PeerReviewed