Strictly singular operators in pairs of L (p) space
Data(s) |
2016
|
---|---|
Resumo |
Let E and F be Banach spaces. A linear operator from E to F is said to be strictly singular if, for any subspace Q aS, E, the restriction of A to Q is not an isomorphism. A compactness criterion for any strictly singular operator from L (p) to L (q) is found. There exists a strictly singular but not superstrictly singular operator on L (p) , provided that p not equal 2. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
en |
Publicador |
Springer |
Relação |
http://eprints.ucm.es/39717/ http://link.springer.com/article/10.1134/S1064562416040281 http://dx.doi.org/10.1134/S1064562416040281 MTM2012-31286 MTM2013-40985 14-01-00141-a |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Análisis matemático |
Tipo |
info:eu-repo/semantics/article PeerReviewed |