Extremal problems on sum-free sets and coverings in tridimensional spaces


Autoria(s): CARMELO, E. L. Monte; MENDONCA NETO, C. F. X. de
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

18/10/2012

18/10/2012

2009

Resumo

Given a prime power q, define c (q) as the minimum cardinality of a subset H of F 3 q which satisfies the following property: every vector in this space di ff ers in at most 1 coordinate from a multiple of a vector in H. In this work, we introduce two extremal problems in combinatorial number theory aiming to discuss a known connection between the corresponding coverings and sum-free sets. Also, we provide several bounds on these maps which yield new classes of coverings, improving the previous upper bound on c (q)

Identificador

AEQUATIONES MATHEMATICAE, v.78, n.1/Fev, p.101-112, 2009

0001-9054

http://producao.usp.br/handle/BDPI/17118

10.1007/s00010-009-2971-0

http://dx.doi.org/10.1007/s00010-009-2971-0

Idioma(s)

eng

Publicador

BIRKHAUSER VERLAG AG

Relação

Aequationes Mathematicae

Direitos

restrictedAccess

Copyright BIRKHAUSER VERLAG AG

Palavras-Chave #Short coverings #extremal problems #sum-free sets #cyclic groups #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion