Extremal problems on sum-free sets and coverings in tridimensional spaces
| Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
|---|---|
| Data(s) |
18/10/2012
18/10/2012
2009
|
| Resumo |
Given a prime power q, define c (q) as the minimum cardinality of a subset H of F 3 q which satisfies the following property: every vector in this space di ff ers in at most 1 coordinate from a multiple of a vector in H. In this work, we introduce two extremal problems in combinatorial number theory aiming to discuss a known connection between the corresponding coverings and sum-free sets. Also, we provide several bounds on these maps which yield new classes of coverings, improving the previous upper bound on c (q) |
| Identificador |
AEQUATIONES MATHEMATICAE, v.78, n.1/Fev, p.101-112, 2009 0001-9054 http://producao.usp.br/handle/BDPI/17118 10.1007/s00010-009-2971-0 |
| Idioma(s) |
eng |
| Publicador |
BIRKHAUSER VERLAG AG |
| Relação |
Aequationes Mathematicae |
| Direitos |
restrictedAccess Copyright BIRKHAUSER VERLAG AG |
| Palavras-Chave | #Short coverings #extremal problems #sum-free sets #cyclic groups #Mathematics, Applied #Mathematics |
| Tipo |
article original article publishedVersion |