About Homogeneous Spaces and the Baire Property in Remainders
Data(s) |
26/12/2012
26/12/2012
2012
|
---|---|
Resumo |
Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - В съобщението е продължено изследването на понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако co-хомогенното пространство X съдържа Gδ -гъсто Московско подпространство, тогава X е Московско пространство. In this paper we continue the study of the notions of o-homogeneous space, lo-homogeneous space, do-homogeneous space and co-homogeneous space. Theorem 5.1 affirms that a co-homogeneous space X is a Moscow space provided it contains a Gδ - dense Moscow subspace Y. ∗2000 Mathematics Subject Classification: 54A35, 63E35, 54D50. Partially supported by a contract of Sofia University of 2012. |
Identificador |
Union of Bulgarian Mathematicians, Vol. 41, No 1, (2012), 134p-138p 1313-3330 |
Idioma(s) |
en |
Publicador |
Union of Bulgarian Mathematicians |
Palavras-Chave | #Homogeneous Space #Dissentive Space #Extension #Baire Property #Moscow Space |
Tipo |
Article |