930 resultados para wheeled mobile robot


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Our everyday environment is full of text but this rich source of information remains largely inaccessible to mobile robots. In this paper we describe an active text spotting system that uses a small number of wide angle views to locate putative text in the environment and then foveates and zooms onto that text in order to improve the reliability of text recognition. We present extensive experimental results obtained with a pan/tilt/zoom camera and a ROS-based mobile robot operating in an indoor environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We introduce a new image-based visual navigation algorithm that allows the Cartesian velocity of a robot to be defined with respect to a set of visually observed features corresponding to previously unseen and unmapped world points. The technique is well suited to mobile robot tasks such as moving along a road or flying over the ground. We describe the algorithm in general form and present detailed simulation results for an aerial robot scenario using a spherical camera and a wide angle perspective camera, and present experimental results for a mobile ground robot.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an account of an autonomous mobile robot deployment in a densely crowded public event with thousands of people from different age groups attending. The robot operated for eight hours on an open floor surrounded by tables, chairs and massive touchscreen displays. Due to the large number of people who were in close vicinity of the robot, different safety measures were implemented including the use of no-go zones which prevent the robot from blocking emergency exits or moving too close to the display screens. The paper presents the lessons learnt and experiences obtained from this experiment, and provides a discussion about the state of mobile service robots in such crowded environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor."--publisher website

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Throughout a lifetime of operation, a mobile service robot needs to acquire, store and update its knowledge of a working environment. This includes the ability to identify and track objects in different places, as well as using this information for interaction with humans. This paper introduces a long-term updating mechanism, inspired by the modal model of human memory, to enable a mobile robot to maintain its knowledge of a changing environment. The memory model is integrated with a hybrid map that represents the global topology and local geometry of the environment, as well as the respective 3D location of objects. We aim to enable the robot to use this knowledge to help humans by suggesting the most likely locations of specific objects in its map. An experiment using omni-directional vision demonstrates the ability to track the movements of several objects in a dynamic environment over an extended period of time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a framework and first set of simulations for evolving a language for communicating about space. The framework comprises two components: (1) An established mobile robot platform, RatSLAM, which has a "brain" architecture based on rodent hippocampus with the ability to integrate visual and odometric cues to create internal maps of its environment. (2) A language learning system based on a neural network architecture that has been designed and implemented with the ability to evolve generalizable languages which can be learned by naive learners. A study using visual scenes and internal maps streamed from the simulated world of the robots to evolve languages is presented. This study investigated the structure of the evolved languages showing that with these inputs, expressive languages can effectively categorize the world. Ongoing studies are extending these investigations to evolve languages that use the full power of the robots representations in populations of agents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by considering a fundamental impediment to classical motion planning algorithms called the freezing robot problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing predictive uncertainty by employing higher fidelity individual dynamics models or heuristically limiting the individual predictive covariance to prevent overcautious navigation. We demonstrate that both the individual prediction and the individual predictive uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision avoidance, cooperatively making room to create feasible trajectories. We accordingly develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a "multiple goal" extension that models the goal driven nature of human decision making. Navigation naturally emerges as a statistic of this distribution.

Most importantly, we empirically validate our models in the Chandler dining hall at Caltech during peak hours, and in the process, carry out the first extensive quantitative study of robot navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-interacting planner or our reactive planner captures the salient characteristics of nearly any existing dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.

Finally, we produce a large database of ground truth pedestrian crowd data. We make this ground truth database publicly available for further scientific study of crowd prediction models, learning from demonstration algorithms, and human robot interaction models in general.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proiektu honetan robot mugikor bat eraiki eta arduino bitartez kontrolatu da. Robota edozein smartphone erabiliz kontrolatu daiteke Bluetooth RC Car aplikazioa erabiliz. Ultrasoinu sentsorea du talkak ekiditeko eta GPSaren bidez uneko posizioaren berri ematen du. Honetaz gain, wifi bidez mezuak ere bidal ditzake proiektuan bertan garatu den echo zerbitzarira.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

提出全地形轮式移动机器人的正逆运动学问题。将机器人看成一个混合串-并联多刚体系统,从每个轮-地接触点到机器人车体分别构成一个串联子系统,抛弃车轮纯滚动假设,在轮-地接触点处建立瞬时坐标系,考虑车轮的平面滑移,从而对每个串联子系统形成一个封闭的速度链。对于每个速度闭链,可直接在驱动轮轮心处写出从机器人各驱动轮到机器人本体之间的运动方程,将每个速度闭链的运动方程合并即可得到机器人的整体运动学模型。以一个具有被动柔顺机构的六轮全地形移动机器人为对象进行推导,该方法既考虑了地形不平的影响,又考虑了车轮的前向、侧向及转向滑移,已知机构参数后就可以直接写出机器人的速度方程,且便于运动学求解。该方法对于轮式移动机器人的运动学建模具有一般性,且具有物理意义明确、推导过程简洁等特点。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

研究全地形移动机器人在不平坦地形中轮-地几何接触角的实时估计问题.本文以带有被动柔顺机构的六轮全地形移动机器人为对象,抛弃轮-地接触点位于车轮支撑臂延长线上这一假设,通过定义轮-地几何接触角δ来反映轮-地接触点在轮缘上位置的变化和地形不平坦给机器人运动带来的影响,将机器人看成是一个串-并联多刚体系统,基于速度闭链理论建立考虑地形不平坦和车轮滑移的机器人运动学模型,并针对轮-地几何接触角δ难以直接测量的问题,提出一种基于模型的卡尔曼滤波实时估计方法.利用卡尔曼滤波对机器人内部传感器的测量值进行噪声处理,基于机器人整体运动学模型对各个轮-地几何接触角进行实时估计,物理实验数据的处理结果验证了本文方法的有效性,从而为机器人运动学的精确计算和高质量的导航控制奠定了基础.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

本文考虑了由2个全方位移动机器人组成的混合动力学系统的协调拟镇定问题.利用机器人位置之间的向量与机器人目标之间向量的内积,设计了多步拟镇定律,该控制律能够在避碰后按指数速率运动到目标点,且在整个过程中两机器人之间的距离不小于避碰的安全距离.最后对2个全方位移动机器人进行了仿真,验证了所给方法的有效性。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A neural network system, NAVITE, for incremental trajectory generation and obstacle avoidance is presented. Unlike other approaches, the system is effective in unstructured environments. Multimodal inforrnation from visual and range data is used for obstacle detection and to eliminate uncertainty in the measurements. Optimal paths are computed without explicitly optimizing cost functions, therefore reducing computational expenses. Simulations of a planar mobile robot (including the dynamic characteristics of the plant) in obstacle-free and object avoidance trajectories are presented. The system can be extended to incorporate global map information into the local decision-making process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ACCURATE sensing of vehicle position and attitude is still a very challenging problem in many mobile robot applications. The mobile robot vehicle applications must have some means of estimating where they are and in which direction they are heading. Many existing indoor positioning systems are limited in workspace and robustness because they require clear lines-of-sight or do not provide absolute, driftfree measurements.The research work presented in this dissertation provides a new approach to position and attitude sensing system designed specifically to meet the challenges of operation in a realistic, cluttered indoor environment, such as that of an office building, hospital, industrial or warehouse. This is accomplished by an innovative assembly of infrared LED source that restricts the spreading of the light intensity distribution confined to a sheet of light and is encoded with localization and traffic information. This Digital Infrared Sheet of Light Beacon (DISLiB) developed for mobile robot is a high resolution absolute localization system which is simple, fast, accurate and robust, without much of computational burden or significant processing. Most of the available beacon's performance in corridors and narrow passages are not satisfactory, whereas the performance of DISLiB is very encouraging in such situations. This research overcomes most of the inherent limitations of existing systems.The work further examines the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. A simple and efficient method is investigated and realized using an FPGA for reducing the errors. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle.The application of encoded Digital Infrared Sheet of Light Beacon (DISLiB) system can be extended to intelligent control of the public transportation system. The system is capable of receiving traffic status input through a GSM (Global System Mobile) modem. The vehicles have infrared receivers and processors capable of decoding the information, and generating the audio and video messages to assist the driver. The thesis further examines the usefulness of the technique to assist the movement of differently-able (blind) persons in indoor or outdoor premises of his residence.The work addressed in this thesis suggests a new way forward in the development of autonomous robotics and guidance systems. However, this work can be easily extended to many other challenging domains, as well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report addresses the problem of achieving cooperation within small- to medium- sized teams of heterogeneous mobile robots. I describe a software architecture I have developed, called ALLIANCE, that facilitates robust, fault tolerant, reliable, and adaptive cooperative control. In addition, an extended version of ALLIANCE, called L-ALLIANCE, is described, which incorporates a dynamic parameter update mechanism that allows teams of mobile robots to improve the efficiency of their mission performance through learning. A number of experimental results of implementing these architectures on both physical and simulated mobile robot teams are described. In addition, this report presents the results of studies of a number of issues in mobile robot cooperation, including fault tolerant cooperative control, adaptive action selection, distributed control, robot awareness of team member actions, improving efficiency through learning, inter-robot communication, action recognition, and local versus global control.