800 resultados para Twisted affine superalgebras
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Bei der Bestimmung der irreduziblen Charaktere einer Gruppe vom Lie-Typ entwickelte Lusztig eine Theorie, in der eine sogenannte Fourier-Transformation auftaucht. Dies ist eine Matrix, die nur von der Weylgruppe der Gruppe vom Lie-Typ abhängt. Anhand der Eigenschaften, die eine solche Fourier- Matrix erfüllen muß, haben Geck und Malle ein Axiomensystem aufgestellt. Dieses ermöglichte es Broue, Malle und Michel füur die Spetses, über die noch vieles unbekannt ist, Fourier-Matrizen zu bestimmen. Das Ziel dieser Arbeit ist eine Untersuchung und neue Interpretation dieser Fourier-Matrizen, die hoffentlich weitere Informationen zu den Spetses liefert. Die Werkzeuge, die dabei entstehen, sind sehr vielseitig verwendbar, denn diese Matrizen entsprechen gewissen Z-Algebren, die im Wesentlichen die Eigenschaften von Tafelalgebren besitzen. Diese spielen in der Darstellungstheorie eine wichtige Rolle, weil z.B. Darstellungsringe Tafelalgebren sind. In der Theorie der Kac-Moody-Algebren gibt es die sogenannte Kac-Peterson-Matrix, die auch die Eigenschaften unserer Fourier-Matrizen besitzt. Ein wichtiges Resultat dieser Arbeit ist, daß die Fourier-Matrizen, die G. Malle zu den imprimitiven komplexen Spiegelungsgruppen definiert, die Eigenschaft besitzen, daß die Strukturkonstanten der zugehörigen Algebren ganze Zahlen sind. Dazu müssen äußere Produkte von Gruppenringen von zyklischen Gruppen untersucht werden. Außerdem gibt es einen Zusammenhang zu den Kac-Peterson-Matrizen: Wir beweisen, daß wir durch Bildung äußerer Produkte von den Matrizen vom Typ A(1)1 zu denen vom Typ C(1) l gelangen. Lusztig erkannte, daß manche seiner Fourier-Matrizen zum Darstellungsring des Quantendoppels einer endlichen Gruppe gehören. Deswegen ist es naheliegend zu versuchen, die noch ungeklärten Matrizen als solche zu identifizieren. Coste, Gannon und Ruelle untersuchen diesen Darstellungsring. Sie stellen eine Reihe von wichtigen Fragen. Eine dieser Fragen beantworten wir, nämlich inwieweit rekonstruiert werden kann, zu welcher endlichen Gruppe gegebene Matrizen gehören. Den Darstellungsring des getwisteten Quantendoppels berechnen wir für viele Beispiele am Computer. Dazu müssen unter anderem Elemente aus der dritten Kohomologie-Gruppe H3(G,C×) explizit berechnet werden, was bisher anscheinend in noch keinem Computeralgebra-System implementiert wurde. Leider ergibt sich hierbei kein Zusammenhang zu den von Spetses herrührenden Matrizen. Die Werkzeuge, die in der Arbeit entwickelt werden, ermöglichen eine strukturelle Zerlegung der Z-Ringe mit Basis in bekannte Anteile. So können wir für die meisten Matrizen der Spetses Konstruktionen angeben: Die zugehörigen Z-Algebren sind Faktorringe von Tensorprodukten von affinen Ringe Charakterringen und von Darstellungsringen von Quantendoppeln.
Resumo:
We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).
Resumo:
This paper introduces a new variant of the popular n-dimensional hypercube network Q(n), known as the n-dimensional locally twisted cube LTQ(n), which has the same number of nodes and the same number of connections per node as Q(n). Furthermore. LTQ(n) is similar to Q(n) in the sense that the nodes can be one-to-one labeled with 0-1 binary sequences of length n. so that the labels of any two adjacent nodes differ in at most two successive bits. One advantage of LTQ(n) is that the diameter is only about half of the diameter of Q(n) We develop a simple routing algorithm for LTQ(n), which creates a shortest path from the source to the destination in O(n) time. We find that LTQ(n) consists of two disjoint copies of Q(n) by adding a matching between their nodes. On this basis. we show that LTQ(n) has a connectivity of n.
Resumo:
The locally twisted cube is a newly introduced interconnection network for parallel computing. Ring embedding is an important issue for evaluating the performance of an interconnection network. In this paper, we investigate the problem of embedding rings into a locally twisted cube. Our main contribution is to find that, for each integer l is an element of (4,5,...,2(n)}, a ring of length I can be embedded into an n-dimensional locally twisted cube so that both the dilation and the load factor are one. As a result, a locally twisted cube is Hamiltonian. We conclude that a locally twisted cube is superior to a hypercube in terms of ring embedding capability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.
Resumo:
Emergency vehicles use high-amplitude sirens to warn pedestrians and other road users of their presence. Unfortunately, the siren noise enters the vehicle and corrupts the intelligibility of two-way radio voice com-munications from the emergency vehicle to a control room. Often the siren has to be turned off to enable the control room to hear what is being said which subsequently endangers people's lives. A digital signal processing (DSP) based system for the cancellation of siren noise embedded within speech is presented. The system has been tested with the least mean square (LMS), normalised least mean square (NLMS) and affine projection algorithm (APA) using recordings from three common types of sirens (two-tone, wail and yelp) from actual test vehicles. It was found that the APA with a projection order of 2 gives comparably improved cancellation over the LMS and NLMS with only a moderate increase in algorithm complexity and code size. Therefore, this siren noise cancellation system using the APA offers an improvement in cancellation achieved by previous systems. The removal of the siren noise improves the response time for the emergency vehicle and thus the system can contribute to saving lives. The system also allows voice communication to take place even when the siren is on and as such the vehicle offers less risk of danger when moving at high speeds in heavy traffic.
Resumo:
The amphiphilic polyene amphotericin B, a powerful treatment for systemic fungal infections, is shown to exhibit a critical aggregation concentration, and to form giant helically-twisted nanostructures via self-assembly in basic aqueous solution.
Resumo:
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterised primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The magnetic cloud “legs,” which magnetically connect the flux rope to the Sun, are not recognisable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-magnetic cloud ICMEs.
Resumo:
The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A group is said to have the R(infinity) property if every automorphism has an infinite number of twisted conjugacy classes. We study the question whether G has the R(infinity) property when G is a finitely generated torsion-free nilpotent group. As a consequence, we show that for every positive integer n >= 5, there is a compact nilmanifold of dimension n on which every homeomorphism is isotopic to a fixed point free homeomorphism. As a by-product, we give a purely group theoretic proof that the free group on two generators has the R(infinity) property. The R(infinity) property for virtually abelian and for C-nilpotent groups are also discussed.
Resumo:
In this article, we prove that any automorphism of R. Thompson`s group F has infinitely many twisted conjugacy classes. The result follows from the work of Brin, together with standard facts about R. Thompson`s group F, and elementary properties of the Reidemeister numbers.
Resumo:
For a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We prove an existence result for local and global G-structure preserving affine immersions between affine manifolds. Several examples are discussed in the context of Riemannian and semi-Riemannian geometry, including the case of isometric immersions into Lie groups endowed with a left-invariant metric, and the case of isometric immersions into products of space forms.
Resumo:
Using Sigma theory we show that for large classes of groups G there is a subgroup H of finite index in Aut(G) such that for phi is an element of H the Reidemeister number R(phi) is infinite. This includes all finitely generated nonpolycyclic groups G that fall into one of the following classes: nilpotent-by-abelian groups of type FP(infinity); groups G/G `` of finite Prufer rank; groups G of type FP(2) without free nonabelian subgroups and with nonpolycyclic maximal metabelian quotient; some direct products of groups; or the pure symmetric automorphism group. Using a different argument we show that the result also holds for 1-ended nonabelian nonsurface limit groups. In some cases, such as with the generalized Thompson`s groups F(n,0) and their finite direct products, H = Aut(G).