Twisted conjugacy classes in nilpotent groups


Autoria(s): GONCALVES, Daciberg; WONG, Peter
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

A group is said to have the R(infinity) property if every automorphism has an infinite number of twisted conjugacy classes. We study the question whether G has the R(infinity) property when G is a finitely generated torsion-free nilpotent group. As a consequence, we show that for every positive integer n >= 5, there is a compact nilmanifold of dimension n on which every homeomorphism is isotopic to a fixed point free homeomorphism. As a by-product, we give a purely group theoretic proof that the free group on two generators has the R(infinity) property. The R(infinity) property for virtually abelian and for C-nilpotent groups are also discussed.

FAPESP[2000/05385-8]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

National Science Foundation (NSF)

National Science Foundation (NSF)[OISE-0334814]

Identificador

JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, v.633, p.11-27, 2009

0075-4102

http://producao.usp.br/handle/BDPI/30581

10.1515/CRELLE.2009.058

http://dx.doi.org/10.1515/CRELLE.2009.058

Idioma(s)

eng

Publicador

WALTER DE GRUYTER & CO

Relação

Journal Fur Die Reine und Angewandte Mathematik

Direitos

restrictedAccess

Copyright WALTER DE GRUYTER & CO

Palavras-Chave #REIDEMEISTER NUMBER #AUTOMORPHISM GROUP #ARNOLD CONJECTURE #NIELSEN NUMBERS #SOLITAR GROUPS #BAUMSLAG #MAPS #MANIFOLDS #POINTS #SPACES #Mathematics
Tipo

article

original article

publishedVersion