Twisted conjugacy classes in nilpotent groups
| Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
|---|---|
| Data(s) |
20/10/2012
20/10/2012
2009
|
| Resumo |
A group is said to have the R(infinity) property if every automorphism has an infinite number of twisted conjugacy classes. We study the question whether G has the R(infinity) property when G is a finitely generated torsion-free nilpotent group. As a consequence, we show that for every positive integer n >= 5, there is a compact nilmanifold of dimension n on which every homeomorphism is isotopic to a fixed point free homeomorphism. As a by-product, we give a purely group theoretic proof that the free group on two generators has the R(infinity) property. The R(infinity) property for virtually abelian and for C-nilpotent groups are also discussed. FAPESP[2000/05385-8] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) National Science Foundation (NSF) National Science Foundation (NSF)[OISE-0334814] |
| Identificador |
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, v.633, p.11-27, 2009 0075-4102 http://producao.usp.br/handle/BDPI/30581 10.1515/CRELLE.2009.058 |
| Idioma(s) |
eng |
| Publicador |
WALTER DE GRUYTER & CO |
| Relação |
Journal Fur Die Reine und Angewandte Mathematik |
| Direitos |
restrictedAccess Copyright WALTER DE GRUYTER & CO |
| Palavras-Chave | #REIDEMEISTER NUMBER #AUTOMORPHISM GROUP #ARNOLD CONJECTURE #NIELSEN NUMBERS #SOLITAR GROUPS #BAUMSLAG #MAPS #MANIFOLDS #POINTS #SPACES #Mathematics |
| Tipo |
article original article publishedVersion |