739 resultados para Modulator
Resumo:
A 1.55-mu m ridge distributed feedback laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter (SSC) at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum-well intermixing, and dual-core technologies. These devices exhibit threshold current of 28 mA, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0-dB dc. The output beam divergence angles of the SSC in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A novel Si-based metal-oxide-semiconductor (MOS) electrooptic phase modulator including two shunt oxide layer capacitors integrated on a silicon-on-insulator (SOI) waveguide is simulated and analyzed. The refractive index near the two gate oxide layers is modified by the free carrier dispersion effect induced by applying a positive bias on the electrodes. The theoretical calculation of free carrier distribution coupled with optical guided mode propagation characteristics has been carried out. The influence of the structure parameters such as the width and the doping level of the active region are analyzed. A half-wave voltage V-pi = 4 V is demonstrated with an 8-mm active region length and a 4-mu m width of an inner rib under an accumulation mode. When decreasing the inner rib width to 1 mu m, the phase modulation efficiency is even higher, and the rise and fall times reach 50 and 40 ps, respectively, with a 1.0 x 10(17) cm(-3) doping level in the active region.
Resumo:
Electro-optical modulator with dual capacitors is designed and based on this design basic configuration of device is realized in laboratory. Exceeding GHz switching speed and high phase modulation efficiency can be expected with this device.
Resumo:
Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.
Resumo:
We present detail design considerations and simulation results of a forward biased carrier injection p-i-n modulator integrated on SOI rib waveguides. To minimize the free carrier absorption loss while keeping the comparatively small lateral dimensions of the modulator as required for high speed operation, we proposed two structural improvements, namely the double ridge (terrace ridge) structure and the isolating grooves at both sides of the double ridge. With improved carrier injection and optical confinement structure, the simulated modulator response time is in sub-ns range and absorption loss is minimized.
Resumo:
zhangdi于2010-03-29批量导入
Resumo:
A GaAs/GaAlAs graded-index separate confinement single quantum well heterostructure single-mode ridge waveguide electroabsorption modulator was fabricated and investigated. For the modulator with a quantum well width of 100 angstrom and device length of 700-mu-m, an on/off ratio of 29.7 dB and estimated absorption insertion loss of 3 dB were obtained for TE polarised light with wavelength 8650 angstrom, and for TM polarisation the on/off ratio was 28.5 dB. With a switching voltage of 1 V, an on/off ratio of 15 dB was achieved. Photocurrent spectra exhibited a red shift of 600 angstrom of the absorption edge when the voltage applied to the PIN diode was varied from 0.5 to -7 V. The corresponding shift of the room temperature exciton peak energy was 96 meV.
Resumo:
A 100-μm-long electroabsorption modulator monolithically integrated with passive waveguides at the input and output ports is fabricated through ion implantation induced quantum well intermixing, using only a two-step low-pressure metal-organic vapor phase epitaxial process. An InGaAsP/InGaAsP intra-step quantum well is introduced to the active region to improve the modulation properties. In the experiment high modulation speed and high extinction ratio are obtained simultaneously, the electrical-to-optical frequency response (E/O response) without any load termination reaches to 22 GHz, and extinction ration is as high as 16 dB.
Resumo:
A compact and stable three-port optical gate has been successfully fabricated by monolithically integrating asimple photodiode and an electroabsorption modulator. The gate shows an excellent DC logic "and" function with differ-ent load resistors. Its dynamical characteristics without packaging have also been measured. We observed a dynamic extinc-tion ratio of over 7dB with a 950Ω load resistor and a 7mW control light power at 622Mbit/s.
Resumo:
We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOI).Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure,which boosts the modulation efficiency compared with a single MOS capacitor.The simulation results demonstrate that the VπLπ product is 2.4V·cm.The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve,respectively,indicating a bandwidth of 8GHz.The phase shift efficiency and bandwidth can be enhanced by rib width scaling.
Resumo:
We report a wavelength tunable electro-absorption modulated DBR laser based on a combined method of SAG and QWI. The threshold current is 37mA and the output power at 100mA gain current is 3.5mW. When coupled to a single-mode fiber with a coupling efficiency of 15% ,more than a 20dB extinction ratio is observed over the change of EAM bias from 0 to -2V. The 4.4nm continuous wavelength tuning range covers 6 channels on a 100GHz grid for WDM telecommunications.
Resumo:
A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A novel 1.55-μm spot-size converter integrated electroabsorption modulator was designed with conventional photolithography and chemical wet etching process. A ridge double-core structure was employed for the modulator, and a buried ridge double-core structure was incorporated for the spot-size converter. The passive waveguide was optically combined with a laterally tapered active waveguide to control the mode size. The figure of merit is 4.1667 dB/V(/100 μm) and the beam divergence angles in the horizontal and vertical directions were as small as 11.2 deg. and 13.0 deg., respectively.