980 resultados para Guariba-de-mãos-ruivas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MOS transistor physical model as described in [3] is presented here as a network model. The goal is to obtain an accurate model, suitable for simulation, free from certain problems reported in the literature [13], and conceptually as simple as possible. To achieve this goal the original model had to be extended and modified. The paper presents the derivation of the network model from physical equations, including the corrections which are required for simulation and which compensate for simplifications introduced in the original physical model. Our intrinsic MOS model consists of three nonlinear voltage-controlled capacitors and a dependent current source. The charges of the capacitors and the current of the current source are functions of the voltages $V_{gs}$, $V_{bs}$, and $V_{ds}$. The complete model consists of the intrinsic model plus the parasitics. The apparent simplicity of the model is a result of hiding information in the characteristics of the nonlinear components. The resulted network model has been checked by simulation and analysis. It is shown that the network model is suitable for simulation: It is defined for any value of the voltages; the functions involved are continuous and satisfy Lipschitz conditions with no jumps at region boundaries; Derivatives have been computed symbolically and are available for use by the Newton-Raphson method. The model"s functions can be measured from the terminals. It is also shown that small channel effects can be included in the model. Higher frequency effects can be modeled by using a network consisting of several sections of the basic lumped model. Future plans include a detailed comparison of the network model with models such as SPICE level 3 and a comparison of the multi- section higher frequency model with experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the push towards sub-micron technology, transistor models have become increasingly complex. The number of components in integrated circuits has forced designer's efforts and skills towards higher levels of design. This has created a gap between design expertise and the performance demands increasingly imposed by the technology. To alleviate this problem, software tools must be developed that provide the designer with expert advice on circuit performance and design. This requires a theory that links the intuitions of an expert circuit analyst with the corresponding principles of formal theory (i.e. algebra, calculus, feedback analysis, network theory, and electrodynamics), and that makes each underlying assumption explicit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conheça as unidades: Amazônia Oriental, Amazônia Ocidental e Florestas; Veja os detalhes sobre a Rede Viva; Minibibliotecas mudam a vida do campo; Ouro controla insetos; Projetos que trazem benefícios; Prêmios à reprodução animal; Efeitos do clima nas plantas; História de dois pesquisadores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continued advancement of metal oxide semiconductor field effect transistor (MOSFET) technology has shifted the focus from Si/SiO2 transistors towards high-κ/III-V transistors for high performance, faster devices. This has been necessary due to the limitations associated with the scaling of the SiO2 thickness below ~1 nm and the associated increased leakage current due to direct electron tunnelling through the gate oxide. The use of these materials exhibiting lower effective charge carrier mass in conjunction with the use of a high-κ gate oxide allows for the continuation of device scaling and increases in the associated MOSFET device performance. The high-κ/III-V interface is a critical challenge to the integration of high-κ dielectrics on III-V channels. The interfacial chemistry of the high-κ/III-V system is more complex than Si, due to the nature of the multitude of potential native oxide chemistries at the surface with the resultant interfacial layer showing poor electrical insulating properties when high-κ dielectrics are deposited directly on these oxides. It is necessary to ensure that a good quality interface is formed in order to reduce leakage and interface state defect density to maximise channel mobility and reduce variability and power dissipation. In this work, the ALD growth of aluminium oxide (Al2O3) and hafnium oxide (HfO2) after various surface pre-treatments was carried out, with the aim of improving the high-κ/III-V interface by reducing the Dit – the density of interface defects caused by imperfections such as dangling bonds, dimers and other unsatisfied bonds at the interfaces of materials. A brief investigation was performed into the structural and electrical properties of Al2O3 films deposited on In0.53Ga0.47As at 200 and 300oC via a novel amidinate precursor. Samples were determined to experience a severe nucleation delay when deposited directly on native oxides, leading to diminished functionality as a gate insulator due to largely reduced growth per cycle. Aluminium oxide MOS capacitors were prepared by ALD and the electrical characteristics of GaAs, In0.53Ga0.47As and InP capacitors which had been exposed to pre-pulse treatments from triethyl gallium and trimethyl indium were examined, to determine if self-cleaning reactions similar to those of trimethyl aluminium occur for other alkyl precursors. An improved C-V characteristic was observed for GaAs devices indicating an improved interface possibly indicating an improvement of the surface upon pre-pulsing with TEG, conversely degraded electrical characteristics observed for In0.53Ga0.47As and InP MOS devices after pre-treatment with triethyl gallium and trimethyl indium respectively. The electrical characteristics of Al2O3/In0.53Ga0.47As MOS capacitors after in-situ H2/Ar plasma treatment or in-situ ammonium sulphide passivation were investigated and estimates of interface Dit calculated. The use of plasma reduced the amount of interface defects as evidenced in the improved C-V characteristics. Samples treated with ammonium sulphide in the ALD chamber were found to display no significant improvement of the high-κ/III-V interface. HfO2 MOS capacitors were fabricated using two different precursors comparing the industry standard hafnium chloride process with deposition from amide precursors incorporating a ~1nm interface control layer of aluminium oxide and the structural and electrical properties investigated. Capacitors furnished from the chloride process exhibited lower hysteresis and improved C-V characteristics as compared to that of hafnium dioxide grown from an amide precursor, an indication that no etching of the film takes place using the chloride precursor in conjunction with a 1nm interlayer. Optimisation of the amide process was carried out and scaled samples electrically characterised in order to determine if reduced bilayer structures display improved electrical characteristics. Samples were determined to exhibit good electrical characteristics with a low midgap Dit indicative of an unpinned Fermi level

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before fertilization, vertebrate eggs are arrested in meiosis II by cytostatic factor (CSF), which holds the anaphase-promoting complex (APC) in an inactive state. It was recently reported that Mos, an integral component of CSF, acts in part by promoting the Rsk-mediated phosphorylation of the APC inhibitor Emi2/Erp1. We report here that Rsk phosphorylation of Emi2 promotes its interaction with the protein phosphatase PP2A. Emi2 residues adjacent to the Rsk phosphorylation site were important for PP2A binding. An Emi2 mutant that retained Rsk phosphorylation but lacked PP2A binding could not be modulated by Mos. PP2A bound to Emi2 acted on two distinct clusters of sites phosphorylated by Cdc2, one responsible for modulating its stability during CSF arrest and one that controls binding to the APC. These findings provide a molecular mechanism for Mos action in promoting CSF arrest and also define an unusual mechanism, whereby protein phosphorylation recruits a phosphatase for dephosphorylation of distinct sites phosphorylated by another kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germanium (Ge) does not grow a suitable oxide for MOS devices. The Ge/dielectric interface is of prime importance to the operation of photo-detectors and scaled MOSTs. Therefore there is a requirement for deposited or bonded dielectric materials. MOS capacitors have been formed on germanium substrates with three different dielectric materials. Firstly, a thermally grown and bonded silicon dioxide (SiO2) layer, secondly, SiO2 deposited by atmospheric pressure CVD ‘silox’, and thirdly a hafnium oxide (HfO2) high-k dielectric deposited by atomic layer deposition (ALD). Ge wafers used were p-type 1 0 0 2 O cm. C–V measurements have been made on all three types of capacitors to assess the interface quality. ALD HfO2 and silox both display acceptable C–V characteristics. Threshold voltage and maximum and minimum capacitance values closely match expected values found through calculation. However, the bonded SiO2 has non-ideal C–V characteristics, revealing the presence of a high density of interface states. A H2/N2 post metal anneal has a detrimental effect on C–V characteristics of HfO2 and silox dielectrics, causing a shift in the threshold voltage and rise in the minimum capacitance value. In the case of hafnium dioxide, capacitor properties can be improved by performing a plasma nitridation of the Ge surface prior to dielectric deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides valuable design insights for optimizing device parameters for nanoscale planar and vertical SOI MOSFETs. The suitability of nanoscale non-planar FinFETs and classical planar single and double gate SOI MOSFETs for rf applications is examined via extensive 3D device simulations and detailed interpretation. The origin of higher parasitic capacitance in FinFETs, compared to planar MOSFETs is examined. RF figures of merit for planar and vertical MOS devices are compared, based on layout-area calculations.