396 resultados para ER3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erbium-doped hydrogenated amorphous silicon suboxide films containing silicon clusters (a-SiOx:H) were prepared. The samples exhibited photoluminescence (PL) peaks at around 750nm and 1.54 mu m, which could be assigned to the electron-hole recombination in silicon clusters and the intra-4f transition in Er3+, respectively. We compared annealing behaviors of Si clusters and Er3+ emission and found that Si clusters emission depends strongly upon crystallinity of Si clusters, whereas Er3+ emission is not sensitive to whether it is Si nanocrystals (nc-Si) or amorphous Si (a-Si) clusters. The erbium-doped a-SiOx:H films containing either a-Si clusters or nc-Si have the same kind of Er3+ -emitting centers. Based on these results, it is concluded that a-Si clusters can play the same role on Er3+ excitation as nc-Si. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local environment of Er3+ in heavily Er-doped (Er, 2.5 at. %) Si nanoclusters embedded in SiO2 films annealed at various temperatures was investigated by using the fluorescence-extended x-ray absorption fine structure spectroscopy. The results show that annealing caused a large effect on the local environment of Er3+ surrounded by O atoms and the 1.54 mu m photoluminescence intensity. The correlation between the local environment around Er3+ and the corresponding 1.54 mu m photoluminescence was discussed. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The erbium-doped hydrogenated amorphous silicon suboxide films containing amorphous silicon clusters were prepared. The samples exhibited photoluminescence peaks at around 750 nm and 1.54 mum, which could be assigned to the electron-hole recombination in amorphous silicon clusters and the intra-4f transition in Er3+, respectively. Correlations between the intensities of these two photoluminescence peaks and oxidation and dehydrogenation of the films during annealing were studied. It was found that the oxidation is triggered by dehydrogenation of the films even at low annealing temperatures, which decisively changes the intensities of the two photoluminescence peaks. On the other hand, the increase of Er content in the erbium-doped hydrogenated amorphous silicon suboxide film will enhance Er3+ emission at 1.54 mum, while quench amorphous silicon cluster emission at 750 nm, such a competitive relationship, was also observed in the erbium-doped silicon nanocrystals embedded in SiO2 matrix. Moreover, we found that Er3+ emission is not sensitive to whether silicon clusters are crystalline or amorphous. The amorphous silicon clusters can be as sensitizer on Er3+ emission as that of silicon nanocrystals. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation on the correlation between amorphous Si (a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H<Er>) film is presented. On one hand, a-Si domains provide sufficient carriers for Er3+ carrier-mediated excitation which has been proved to be the highest excitation path for Er3+ ion; on the other hand, hydrogen diffusion from a-Si domains to amorphous silicon oxide (a-SiOx) matrix during annealing has been found and this possibly decreases the number of nonradiative centres around Er3+ ions. This study provides a better understanding of the role of a-Si domains on Er3+ emission in a-Si:O:H<Er> films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con-elation between nc-Si, Er3+ and nonradiative defects in Er-doped nc-Si/SiO2 films is studied. Upon the 514.5 run laser excitation, the samples exhibit a nanocrystal-related spectrum centered at around 750 nm and an Er3+ luminescence line at 1.54mum. With increasing Er3+ content in the films,the Er3+ emission becomes intense while the photoluminescence at 750 nm decreases. Hydrogen passivation of the samples is shown to result in increases of the two luminescence peaks. However, the effect of hydrogen treatment is different for the samples annealed at different temperatures. The experimental results show that the coupling between Er3+, nc-Si and noradiative centers has a great influence on photoluminescence from nc-Si/SiO2 < Er > films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) from Er-implanted hydrogenated amorphous silicon suboxide (a-SiOX:H<Er>(x<2.0)) films was measured. Two luminescence bands with maxima at lambda congruent to 750 nm and lambda congruent to 1.54mum, ascribed to the a-SiOX:H intrinsic emission and Er3+ emission, were observed. Peak intensities of the two bands follow the same trend as a function of annealing temperature from 300 to 1000degreesC. Micro-Raman results indicate that the a-SiOX:H<Er> films are a mixture of two phases, an amorphous SiOX matrix and amorphous silicon (a-Si) domains embedded there in. FTIR spectra confirm that hydrogen effusion from a-SiOX:H<Er> films occurs during annealing. Hydrogen effusion leads to a reconstruction of the microstructure of a-Si domains, thus having a strong influence on Er3+ emission. Our study emphasizes the role of a-Si domains on Er3+ emission in a-SiOX:H<Er> films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PL properties of Er3+ doped SiOx films containing Si nanoparticles have been studied. Er3+ emission intensity does not depend strongly upon crystallinity of Si clusters. The films can yield efficient Er3+ emission.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Natural Science Foundationa of China(60253706060408002)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+Judd-Ofelt Er3+ 0.15 mol%Er2O3 Er3+ 522 nm544 nm658 nm 2H11/24I15/24 S3/24I15/24 F9/24I15/2 522 nm 658nm 544 nm . Er3+ .