987 resultados para ABSORPTION METHOD
Resumo:
A novel method, based on an infrared absorption and neutron irradiation technique, has been developed for the determination of interstitial oxygen in heavily boron-doped silicon. The new procedure utilizes fast neutron irradiated silicon wafer specimens. On fast neutron irradiation, the free carriers of high concentration in silicon can be trapped by the irradiated defects and the resistivity increased. The resulting calibration curve for the measurement of interstitial oxygen in boron-doped silicon has been established on the basis of the annealing behaviour of irradiated boron-doped CZ silicon.
Resumo:
The linear and circular photogalvanic effects have been observed in undoped InN films for the interband transition by irradiation of 1060 nm laser at room temperature. The spin polarized photocurrent depends on the degree of polarization, and changes its sip when the radiation helicity changes from left-handed to right-handed. This result indicates the sizeable spin-orbit interaction in the InN epitaxial layer and provides an effective method to generate spin polarized photocurrent and to detect spin-splitting effect in semiconductors with promising applications on spintronics.
Resumo:
Hall effect, photoluminescence (PL), infrared absorption, deep level transient spectroscopy (DLTS), and Raman scattering have been used to study property and defects of ZnO single crystal grown by a chemical vapor transport method (CVT). As-grown ZnO is N type with free electron density Of 10(16)-10(17)cm(-3). It has a slight increase after 900 degrees C annealing in oxygen ambient. The DLTS measurement revealed four deep level defects with energy at 0.30eV, 0.50eV, 0.68eV and 0.90eV in the as-grown ZnO sample, respectively. After the high temperature annealing, only the 0.5eV defect survive and has a concentration increase. PL results of the as-grown and annealed ZnO indicate that the well-known green emission disappear after the annealing. The result suggests a correlation between the 0.68eV defect and the green PL peak. Results of P-doped ZnO were also compared with the undoped ZnO sample. The nature of the defects and their influence on the material property have been discussed.
Resumo:
Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.
Resumo:
Radiant heat conversion performance dominated by the active layer of Ga0.84In0.16As0.14Sb0.86 diode has been systematically investigated based on an analytic absorption spectrum, which is suggested here by numerically fitting the limited experimental data. For the concerned diode configuration, our calculation demonstrates that the optimal base doping is 3-4 x 10(17) cm(-3), which is less sensitive to the variation of the external radiation spectrum. Given the scarcity of the alloy elements, an economical device configuration of the 0.2-0.6 mu m emitter and the 4-6 mu m base would be particularly acceptable because the corresponding conversion efficiency cannot exhibit discouraging degradation in comparison to the one for the optimal structure, the thickness of which may be up to 10 mu m. More importantly, the method we suggested here to calculate alloy absorption can be easily transferred to other composition, thus bringing great convenience for design or optimization of the optoelectronic device formed by these alloys.
Resumo:
The magnetoexcitonic optical absorption of a GaAs bulk semiconductor driven by a terahertz (THz) field is investigated numerically. The method of the solution of the initial-value problem, in combination with the perfect matched layer technique, is used to calculate the optical susceptibility, with Coulomb interaction, Landau quantization, and THz fields involved nonperturbatively. It shows that there appear replicas and sidebands of magnetoexciton of different Landau levels, which greatly enrich the magneto-optical spectrum in the presence of a driving THz field. Copyright (C) EPLA, 2008.
Resumo:
The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.
Resumo:
Fulgides are one kind of organic photochromic compound, which are famous for their thermal irreversibility. In this report, from the difference spectra of the absorption A() of one kind of pyrrylfulgide, the spectral refractive index change n() was calculated by the Kramers-Kronig relation (KKR), and a good correlation of theoretically derived values and the experimental values of the n measured by a modified Michelson interferometer was found. Further, it is demonstrated that it was possible to calculate the spectral dependence of diffraction efficiency from the easily accessible absorption changes. This method will be a useful tool for the characterization and optimization of fulgide films. The results show that the diffraction efficiency is high at 488 and 750 nm, where the absorption is very small, so we can realize non-destructive reconstruction.
Resumo:
The times spent by an electron in a scattering event or tunnelling through a potential barrier are investigated using a method based on the absorption probabilities. The reflection and transmission times derived from this method are equal to the local Larmor times if the transmission and reflection probability amplitudes are complex analytic functions of the complex potential. The numerical results show that they coincide with the phase times except as the incident electron energy approaches zero or when the transmission probability is too small. If the imaginary potential covers the whole space the tunnelling times are again equal to the phase times. The results show that the tunnelling times based on absorption probabilities are the best of the various candidates.
Resumo:
The defects and the lattice perfection of an AlN (0001) single crystal grown by the physical vapor transport (PVT) method were investigated by wet etching, X-ray diffraction (XRD), and infrared absorption, respectively. A regular hexagonal etch pit density (EPD) of about 4000 cm~(-2) is observed on the (0001) A1 surface of an AlN single crystal. The EPD exhibits a line array along the slip direction of the wurtzite structure, indicating a quite large thermal stress born by the crystal in the growth process. The XRD full width at half maximum (FWHM) of the single crystal is 35 arcsec, suggesting a good lattice perfection. Pronounced infrared absorption peaks are observed at wave numbers of 1790, 1850, 2000, and 3000 cm~(-1), respectively. These absorptions might relate to impurities O, C, Si and their complexes in AlN single crystals.
Resumo:
A novel 800nm Bragg mirror type of semiconductor saturable absorption mirror with low temperature method and surface state method combined absorber is presented.With which passive Kerr lens mode locking of Ti∶Al2O3 laser pumped by argon ion laser is realized,which produces pulses as short as 40fs.The spectrum bandwidth is 56nm,which means that it can support the modelocking of 20fs.The pulse frequency is 97.5MHz;average output power is 300mW at the pump power of 4.45W.
Resumo:
Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorption tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.
Resumo:
A novel method based on wavelength-multiplexed line-of-sight absorption and profile fitting for non-uniform flow field measurement is reported. A wavelength scanning combing laser temperature and current modulation WMS scheme is used to implement the wavelength-multiplexed-profile fitting method. Second harmonic (2f) signal of eight H2O transitions features near 7,170 cm(-1) are measured in one period using a single tunable diode laser. Spatial resolved temperature distribution upon a CH4/air premixed flat flame burner is obtained. The result validates the feasibility of strategy for non-uniform flow field diagnostics by means of WMS-2f TDLAS.
Resumo:
In the frame of time-dependent density functional theory, the: dynamical polarizabilities of Na-5, Na-6 and Na-7 clusters are calculated using a time-dependent local density approximation. By using Fourier transformation, the optical absorption spectra of Na-5, Na-6 and Na-7 clusters are obtained from their dynamical polarizabilities. It is shown that experimentally measured optical absorption spectra of Na-5, Na-6 and Na-7 clusters are reproduced in our calculations. Furthermore, the calculations of Na-6 and Na-7 clusters are in good agreement with the results of configuration interaction method. Compared with the three-dimensional structure of Na-6, the calculated optical absorption spectra of Na-6 with the two-dimensional structure are more close to the experimental data.
Resumo:
Poly(vinyl alcohol) (PVA) nanofibers containing gold nanoparticles have been simply obtained by electrospinning a solution containing gold nanoparticles without the additional step of introducing other stabilizing agents. The optical property of gold nanoparticles in PVA aqueous solution was observed by UV-visible absorption spectra. Morphology of the Au/PVA nanofibers and distribution of the gold nanoparticles were characterized by transmission electron. microscopy (TEM). The structure transformation was characterized from PVA to PVA/Au composite by Fourier transform infrared spectroscopy (FTIR).