989 resultados para Plane Fracture Problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

提出亚微秒单脉冲应力波载荷作用下II型裂纹的平板冲击实验技术。加载率为dK/dt-10~8MPa·m~{”/d}·s~{-1}。实验中由锰铜应力片和弹性波理论分别测定和计算了压应力;通过微观分析确定了动态裂纹的平均扩展长度;引进等效应力强度因子,用动态断裂理论确定了60号钢的动态断裂韧性K_{Id}和K_{IId};建立了亚微秒冲击载荷作用下确定材料动态断裂韧性的方法。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic fractography and scanning electronic microscopy (SEM) are used to determine the direct relationship between the fracture surface morphology and the main crack velocity during the rapid rupture of polymethylmethacrylate (PMMA). Two critical crack velocities are found for the fracture. Quasi-parabolic markings will appear when the crack speed exceeds the first critical speed. Crack propagating at speed above the second critical speed leaves a thicket of small branches penetrating the surface behind them. Both critical speeds are functions of the thickness of the specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of microscopical analyses of the fiber distribution and longitudinal shear deformation in unidirectional fiber composites, a simple approach is presented for characterizing the interfacial sheer strength and fracture toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model is proposed to simulate fracture induced by the coalescence of numerous microcracks, in which the condition for coalescence between two randomly nucleated microcracks is determined in terms of a load-sharing principle. The results of the simulation show that, as the number density of nucleated microcracks increases, stochastic coalescence first occurs followed by a small fluctuation, and finally a newly nucleated microcrack triggers a cascade coalescence of microcracks resulting in catastrophic failure. The fracture profiles exhibit self-affine fractal characteristics with a universal roughness exponent, but the critical damage threshold is sensitive to details of the model. The spatiotemporal distribution of nucleated microcracks in the vicinity of critical failure follows a power-law behaviour, which implies that the microcrack system may evolve to a critical state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strengthening mechanism arising from a type of inorganic nanostructure in the organic matrix layers is presented by studying the structural and mechanical properties of the interfaces in nacre. This nanostructural mechanism not only averagely increases the fracture strength of the organic matrix interfaces by about 5 times, but also effectively arrests the cracks in the organic matrix layers and causes the crack deflection in this biomaterial. The present investigation shows that the main mechanism governing the strength of the organic matrix interfaces relies on the inorganic nanostructures rather than the organic matrix. This study provides a guide to the interfacial design of synthetic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essential work of fracture (EWF) analysis is used to study the effect of the silica doping level on fracture toughness of polyimide/silica (PI/SiO2) hybrid films. By using double-edge-notched-tension (DENT) specimens with different ligament lengths, it seems that the introduction of silica additive can improve the specific essential work of fracture (w (e) ) of PI thin films, but the specific non-essential work of fracture (beta w (p) ) will decease significantly as the silica doping level increasing from 1 to 5 wt.%, and even lower than that of neat PI. The failure process of the fracture is investigated with online scanning electron microscope (SEM) observation and the parameters of non-essential work of fracture, beta and w (p) , are calculated based on finite element (FE) method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the transient dynamic stress intensity factor (SIF) is determined for an interface crack between two dissimilar half-infinite isotropic viscoelastic bodies under impact loading. An anti-plane step loading is assumed to act suddenly on the surface of interface crack of finite length. The stress field incurred near the crack tip is analyzed. The integral transformation method and singular integral equation approach are used to get the solution. By virtue of the integral transformation method, the viscoelastic mixed boundary problem is reduced to a set of dual integral equations of crack open displacement function in the transformation domain. The dual integral equations can be further transformed into the first kind of Cauchy-type singular integral equation (SIE) by introduction of crack dislocation density function. A piecewise continuous function approach is adopted to get the numerical solution of SIE. Finally, numerical inverse integral transformation is performed and the dynamic SIF in transformation domain is recovered to that in time domain. The dynamic SIF during a small time-interval is evaluated, and the effects of the viscoelastic material parameters on dynamic SIF are analyzed.