986 resultados para Gibbs energy of mixing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a low temperature grown GaAs wafer as an intracavity saturable absorber, a temporal envelope duration of 11 ns of Q- switched and mode- locked ( QML) 1064 nm operation was achieved in a very simple compact plane- concave cavity Nd: YVO4 laser, it was so short that the pulses can be used as Q- switching pulses. The maximal average output power is 808 mW with the repetition rate of 25 kHz, and the corresponding peak power and energy of a single Q- switched pulse was 2.94 kW and 32.3 mu J, respectively. The mode- locked pulse trains inside the Q- switched pulse envelope had a repetition rate of 800 MHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a detailed study on the effects of carbon incorporation and substrate temperature on structural, optical, and electrical properties of p-type nanocrystalline amorphous silicon films. A p-nc-SiC: H thin film with optical gap of 1.92 eV and activation energy of 0.06 eV is obtained through optimizing the plasma parameters. By using this p-type window layer, single junction diphasic nc-SiC : H/a-Si : H solar cells have been successfully prepared with a V-oc of 0.94 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wurtzite ZnO/MgO superlattices were successfully grown on Si (001) substrates at 750 degrees C using radio-frequency reactive magnetron sputtering method. X-ray reflection and diffraction, electronic probe and photoluminescence analysis were used to characterize the multiple quantum wells (MQWs). The results showed the periodic layer thickness of the MQWs to be 1.85 to 22.3 nm. The blueshift induced by quantum confinement was observed. Least square fitting method was used to deduce the zero phonon energy of the exciton from the room-temperature photoluminescence. It was found that the MgO barrier layers has a much larger offset than ZnMgO. The fluctuation of periodic layer thickness of the MQWs was suggested to be a possible reason causing the photoluminescence spectrum broadening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a structure of (In, Ga)As/GaAs quantum dots which are vertically correlated and laterally aligned in a hexagonal way thus forming three-dimensionally ordered arrays. The growth pathway is based on a mechanism of self-assembly by strain-mediated multilayer vertical stacking on a planar GaAs(100) substrate, rather than molecular-beam epitaxy on a prepatterned substrate. The strain energy of lateral island-island interaction is minimum for the arrangement of hexagonal ordering. However, realization of hexagonal ordering not only depends on a complicated trade-off between lateral and vertical island-island interaction but is also related to a delicate and narrow growth kinetics window.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature and pressure dependences of band-edge photo luminescence from ZnO microrods have been investigated. The energy separation between the free exciton (FX) and its first order phonon replica (FX-1LO) decreases at a rate of k(B)T with increasing temperature. The intensity ratio of the FX-1LO to the bound exciton (BX) emission is found to decrease slightly with increasing pressure. All of the exciton emission peaks show a blue shift with increasing pressure. The pressure coefficient of the FX transition, longitudinal optical (LO) phonon energy, and binding energy of BX are estimated to be 21.4, 0.5, and 0.9 meV/GPa, respectively. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p-type doping is a great challenge for the full utilization of ZnO as short-wavelength optoelectronic material. Due to a large electronegative characteristic of oxygen, the ionization energy of acceptors in ZnO is usually too high. By analyzing the defect wave-function character, we propose several approaches to lower the acceptor ionization energy by codoping acceptors with donor or isovalent atoms. Using the first-principles band-structure method, we show that the acceptor transition energies of V-Zn-O-O can be reduced by introducing F-O next to V-Zn to reduce electronic potential, whereas the acceptor transition energy of N-O-nZn(Zn) (n=1-4) can be reduced if we replace Zn by isovalent Mg or Be to reduce the anion and cation kinetic p-d repulsion, as well as the electronic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the exciton states of vertically stacked self-assembled quantum disks within the effective mass approximation. The ground energies of a heavy-hole and a light-hole excitons as functions of the vertical disk separation are presented and discussed. The transition energy of a heavy-hole ground-state exciton is calculated and compared with the experimental data. The binding energies are discussed in terms of the probability of ground wave function. The ground energies of a heavy-hole and a light-hole excitons as functions of the applied axial magnetic field are calculated and the effect of disk size (radius of disks) on exciton energies is discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lifetimes of a series of N-related photoluminescence lines (A(2)-A(6)) in GaAs1-xNx (x=0.1%) were studied under hydrostatic pressures at similar to 30 K. The lifetimes of A(5) and A(6) were found to increase rapidly with increasing pressure: from 2.1 ns at 0 GPa to more than 20 ns at 0.92 GPa for A(5) and from 3.2 ns at 0.63 GPa to 10.8 ns at 0.92 GPa for A(6). The lifetime is found to be closely correlated with the binding energy of the N impurity states, which is shown either in the pressure dependence for a given emission line or in the lifetime variation from A(2) to A(6). (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valence-band type Auger lines in Al doped and undoped ZnO were comparatively studied with the corresponding core level x-ray photoelectron spectrography (XPS) spectra as references. Then the shift trend of energy levels in the valence band was that p and p-s-d states move upwards but e and p-d states downwards with increasing Al concentration. The decreased energy of the Zn 3d state is larger than the increased energy of the 0 2p state, indicating the lowering of total energy. This may indicate that Al doping could induce the enhancement of p-d coupling in ZnO, which originates from stronger Al-O hybridization. The shifts of these states and the mechanism were confirmed by valence band XPS spectra and 0 K-edge x-ray absorption spectrography (XAS) spectra. Finally, some previously reported phenomena are explained based on the Al doping induced enhancement of p-d coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray diffraction and Rutherford backscattering/channeling were used to characterize the crystalline quality of an InN layer grown on Al2O3(0001) Using metal-organic chemical-vapor deposition. A full width at half maximum of 0.27 degrees from an InN(0002) omega scan and a minimum yield of 23% from channeling measurements show that this 480-nm-thick InN layer grown at low temperature (450 degrees C) has a relatively good crystalline quality. High-resolution x-ray diffraction indicates that the InN layer contains a small fraction of cubic InN, besides the predominant hexagonal phase. From this InN sample, the lattice constants a=0.353 76 nm and c=0.570 64 nm for the hexagonal InN and a=0.4986 nm for the cubic InN were determined independently. 2 theta/omega-chi mapping and a pole figure measurement revealed that the crystallographic relationship among the cubic InN, the hexagonal InN, and the substrate is: InN[111]parallel to InN[0001]parallel to Al2O3[0001] and InN{110}parallel to InN{1120}parallel to Al2O3{1010}, and that the cubic InN is twinned. Photoluminescence measurements indicate that the band-gap energy of this sample is approximately 0.82 eV. (c) 2006 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the annealing and activation of silicon implanted in both as-grown Fe-doped semi-insulating (SI) InP substrate and undoped SI InP substrate obtained by annealing high purity conductive InP wafer (wafer-annealed). Si implantations were performed at an energy of 500 keV and a dose of 1 X 10(15) cm(-2). Following the implantations, rapid thermal annealing (RTA) cycles were carried out for 30 s at different temperatures. The results of Raman measurements show that for 700degreesC/30s RTA, the two Si-implanted SI InP substrates have acquired a high degree of lattice recovery and electrical activation. However, further Hall measurements indicate that the carrier concentration of the wafer-annealed SI InP substrate is about three times higher than that of the as-grown Fe-doped SI InP substrate. The difference can be ascribed to the low Fe concentration of the wafer-annealed SI InP substrate.These experimental data imply that the use of the wafer-annealed SI InP substrate can be conducive to the improvement of InP-based device performances. (C) 2003 Elsevier Ltd. All rights reserved.