997 resultados para PL emission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the Raman scattering and the photoluminescence (PL) of ZnSxTe1-x mixed crystals grown by MBE, covering the entire composition range (0 less than or equal to x < 1). The results of Raman studies show that the ZnSxTe1-x mixed crystals display two-mode behaviour. In addition, photoluminescence spectra obtained in backscattering and edge-emission geometries, reflectivity spectra and the: temperature dependence of the photoluminescence of ZnSxTe1-x have been employed to find out the origin of PL emissions in ZnSxTe1-x with different x values. The results indicate that emission bands, for the samples with small x values, can be related to the band gap transitions or a shallow-level emission centre, while as x approaches 1, they are designated to strong radiative recombination of Te isoelectronic centres (IECs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined photoluminescence (PL), IR absorption and Raman spectra of a series of hydrogenated amorphous silicon oxide (a-SiOx:H, (0 < x < 2)) films fabricated by plasma enhanced chemical vapor deposition (PECVD). Two strong luminescence bands were observed at room temperature, one is a broad envelope comprising a main peak around 670 nm and a shoulder at 835 nm, and the other, peaked around 850 nm; is found only after being annealed up to 1170 degrees C in N-2 environment. In conjunction with IR and Raman spectra, the origins of the two luminescent bands and their annealing behaviors are discussed on the basis of quantum confinement effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal GaN films of hexagonal modification have been fabricated on Al2O3/Si (001) substrates via a low pressure metalorganic chemical deposition (LP-MOCVD) method. The full width at half-maximum of (0002) X-ray diffraction peak for the GaN film 1.1 mu m thick was 72 arcmin. and the mosaic structure of the film was the main cause of broadening to the X-ray diffraction peak. Al room temperature, the photoluminescence (PL) spectrum of GaN exhibited near band edge emission peaking at 365 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the temperature dependence of photoluminescence (PL) properties of a number of InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 monolayer (ML) to 3 ML. The temperature dependence of the InAs exciton energy and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML, indicating spontaneous formation of quantum dots (QDs). A model, involving exciton recombination and thermal activation and transfer, is proposed to explain the experimental data. In the PL thermal quenching study, the measured thermal activation energies of different samples demonstrate that the InAs wetting layer may act as a barrier for thermionic emission of carriers in high quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to thermally escape from the localized states. (C) 1998 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Output coupling efficiencies are analyzed for triangular and square microlasers connected with an output waveguide by FDTD simulation. The results show that square resonator with an output waveguide connected to the midpoint of one side can have high output coupling efficiency and a good mode selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thick GaN films were grown on sapphire in a home-made vertical HVPE reactor. Effect of nucleation treatments on the properties of GaN films was investigated, including the nitridation of sapphire, low temperature GaN buffer and MOCVD-template. Various material characterization techniques, including AFM, SEM, XRD, CL and PL have been used to assess these GaN epitaxial films. It was found that the surface of sapphire after high temperature nitridation was flat and showed high density nucleation centers. In addition, smooth Ga-polarity surface of epitaxial layer can be obtained on the nitridation sapphire placed in air for several days due to polarity inversion. This may be caused by the atoms re-arrangement because of oxidation. The roughness of N-polarity film was caused by the huge inverted taper domains, which can penetrate up to the surface. The low temperature GaN buffer gown at 650 degrees C is favorable for subsequent epitaxial film, which had narrow FWHM of 307 arcsec. The epitaxial growth on MOCVD-template directly came into quasi-2D growth mode due to enough nucleation centers, and high quality GaN films were acquired with the values of the FWHM of 141 arcsec for (002) reflections. After etching in boiled KOH, that the total etch-pit density was only 5 x 106 cm(-2) illustrated high quality of the thick film on template. The photoluminescence spectrum of GaN film on the MOCVD-template showed the narrowest line-width of the band edge emission in comparison with other two growth modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hall effect, photoluminescence (PL), infrared absorption, deep level transient spectroscopy (DLTS), and Raman scattering have been used to study property and defects of ZnO single crystal grown by a chemical vapor transport method (CVT). As-grown ZnO is N type with free electron density Of 10(16)-10(17)cm(-3). It has a slight increase after 900 degrees C annealing in oxygen ambient. The DLTS measurement revealed four deep level defects with energy at 0.30eV, 0.50eV, 0.68eV and 0.90eV in the as-grown ZnO sample, respectively. After the high temperature annealing, only the 0.5eV defect survive and has a concentration increase. PL results of the as-grown and annealed ZnO indicate that the well-known green emission disappear after the annealing. The result suggests a correlation between the 0.68eV defect and the green PL peak. Results of P-doped ZnO were also compared with the undoped ZnO sample. The nature of the defects and their influence on the material property have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs(100) substrates grown by metalorganic chemical vapor deposition (MOCVD) is studied. An abnormal trend of the evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then there is a sudden decrease at 535 degrees C. Photoluminescence (PL) studies show that QDs on vicinal substrates have a narrower PL line width, a longer emission wavelength and a larger PL intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High quality ZnO films have been successfully grown on Si(100) substrates by Metal-organic chemical vapor deposition (MOCVD) technique. The optimization of growth conditions (II-VI ratio, growth temperature, etc) and the effects of film thickness and thermal treatment on ZnO films' crystal quality, surface morphology and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectrum, respectively. The XRD patterns of the films grown at the optimized temperature (300 degrees C) show only a sharp peak at about 34.4 degrees corresponding to the (0002) peak of hexagonal ZnO, and the FWHM was lower than 0.4 degrees. We find that under the optimized growth conditions, the increase of the ZnO films' thickness cannot improve their structural and optical properties. We suggest that if the film's thickness exceeds an optimum value, the crystal quality will be degraded due to the large differences of lattice constant and thermal expansion coefficient between Si and ZnO. In PL analysis, samples all displayed only ultraviolet emission peaks and no observable deep-level emission, which indicated high-quality ZnO films obtained. Thermal treatments were performed in oxygen and nitrogen atmosphere, respectively. Through the analysis of PL spectra, we found that ZnO films annealing in oxygen have the strongest intensity and the low FWHM of 10.44 nm(106 meV) which is smaller than other reported values on ZnO films grown by MOCVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal annealing of InAs/GaAs quantum dots (QDs) with emission wavelength at 1.3 mu m have been investigated by photoluminescence (PL) and transmission electron microscopy (TEM measurements. There is a dramatic change in the A spectra when the annealing temperature is raised up to 800 degrees C: an accelerated blushifit of the main emission peak of QDs together with an inhomogeneous broadening of the linewidth. The TEM images shows that the lateral size of normal QDs decreases as the annealing temperature is increased, while the noncoherent islands increase their size and densit. A small fraction of the relative large QDs contain dislocations when the annealing temperature increases up to 800 degrees C. The latter leads to the strong decrease of the PL intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) and absorption experiments were carried out to examine the fundamental band-gap of InN films grown on silicon substrates. A strong PL peak at 0.78 eV was observed at room temperature, which is much lower than the commonly accepted value of 1.9 eV. The integrated PL intensity was found to depend linearly on the excitation laser intensity over a wide intensity range. These results strongly suggest that the observed PL is related to the emission of the fundamental inter-band transitions of InN rather than to deep defect or impurity levels. Due to the effect of band-filling with increasing free electron concentration, the absorption edge shifts to higher energy. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense near infrared emission was observed from Al3+ and Yb3+ ions co-implanted SiO2 film on silicon. It was found that the addition of Al3+ ions could remarkably improve the photoluminescence efficiency of Yb3+-implanted SiO2 film. No excitation power saturation was observed and trivial temperature quenching factor of 2 was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PL properties of Er3+ doped SiOx films containing Si nanoparticles have been studied. Er3+ emission intensity does not depend strongly upon crystallinity of Si clusters. The films can yield efficient Er3+ emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron-doped (B-doped) silicon nanowires (SiNWS) have been prepared and characterized by Raman scattering and photoluminescence (PL). B-doped SiNWS were grown by plasma enhanced chemical vapor deposition (PECVD), using diborane (B2H6) as the dopant gas. Raman spectra show a band at 480cm(-1),which is attributed to amorphous silicon. Photoluminescence at room temperature exhibits three distinct emission peaks at 1.34ev, 1.42ev, 1.47ev. Possible reason for these is suggested.