994 resultados para Femtosecond spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy (XPS) is discussed, and a modification method based on a modified self-consistent calculation is proposed to eliminate the influence and thus increasing the precision of XPS. Considering the spontaneous polarization at the surfaces and interfaces and the different positions of Fermi levels at the surfaces, we compare the energy band structures of Al/Ga-polar AlN/GaN and N-polar GaN/AlN heterojunctions, and give corrections to the XPS-measured valence band offsets. Other AlN/GaN heterojunctions and the piezoelectric polarization are also introduced and discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 +/- 0.19 eV, according to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V : Delta E-C = E-g(GaN) - E-g(Ge) - Delta E-V, and taking the room-temperature band-gaps as 3.4 and 0.67 eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6 +/- 0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence band offset (VBO) of MgO/TiO2 (rutile) heterojunction has been directly measured by Xray photoelectron spectroscopy. The VBO of the heterojunction is determined to be 1.6 +/- 0.3 eV and the conduction band offset (CBO) is deduced to be 3.2 +/- 0.3 eV, indicating that the heterojunction exhibits a type-I band alignment. These large values are sufficient for MgO to act as tunneling barriers in TiO2 based devices. The accurate determination of the valence and conduction band offsets is important for use of MgO as a buffer layer in TiO2 based field-effect transistors and dye-sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the w-InN/h-BN heterojunction. We find that it is a type-II heterojunction with the VBO being -0.30 +/- A 0.09 eV and the corresponding conduction band offset (CBO) being 4.99 +/- A 0.09 eV. The accurate determination of VBO and CBO is important for designing the w-InN/h-BN-based electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface properties of GaNxAs1-x/GaAs single-quantum well is investigated at 80 K by reflectance difference spectroscopy. Strong in-plane optical anisotropies (IPOA) are observed. Numerical calculations based on a 4 band K . P Hamiltonian are performed to analyze the origin of the optical anisotropy. It is found that the IPOA can be mainly attributed to anisotropic strain effect, which increases with the concentration of nitrogen. The origin of the strain component epsilon(xy) is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis and calculation of the compensation for the phase mismatch of the frequency-doubling using the frequency space chirp introduced from prisms are made. The result shows that suitable lens can compensate the phase mismatch in a certain extent resulting from wide femtosecond spectrum when the spectrum is space chirped. By means of this method, the experiment of second harmonic generation is carried out using a home-made femtosecond KLM Ti:sapphire laser and BBO crystal. The conversion efficiency of SHG is 63 %. The average output power of blue light is 320 mW. The central wavelength is 420 nm. The spectrum bandwidth is 5.5 nm. It can sustain the pulse width of 33.6 fs. The tuning range of blue light is 404-420 nm,when the femtosecond Ti:sapphire optical pulse is tuned using the prisms in the cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of K alpha X-ray sources generated by p-polarized femtosecond laser-solid interactions are experimentally studied in the relativistic regime. By use of knife-edge image technique and a single-photon-counting X-ray CCD camera, we obtaine the source size, the spectrum and the conversion efficiency of the Ka X-ray sources. The experimental results show that the conversion efficiency of Ka photons reaches an optimum value of 7.08 x 10(-6)/sr at the laser intensity of 1.6 x 10(18) W/cm(2), which is different from the Reich's simulation results (Reich et al., 2000 Phys. Rev. Lett. 84 4846). We find that about 10% of laser energy is converted into the forward hot electrons at the laser intensity of 1.6 x 10(18) W/cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observation of intense spontaneous emission of green light from LiF:F-2:F-3(+) centers in active channel waveguides generated in lithium fluoride crystals by near-infrared femtosecond laser radiation. While irradiating the crystal at room temperature with 405 nm light from a laser diode, yellow and green emission was seen by the naked eye. Stripe waveguides were fabricated by translating the crystal along the irradiated laser pulse, and their guiding properties and fluorescence spectra at 540 nm demonstrated. This single-step process inducing a waveguide structure offers a good prospect for the development of a waveguide laser in bulk LiF crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro Fabry-Perot (F-P) interferometers (MFPIs) are machined in a single-mode fiber (SMF) and a photonic crystal fiber (PCF) by using a near-infrared femtosecond laser, respectively. The strain and temperature characteristics of the two MFPIs with an identical cavity length are investigated and the experimental results show that the strain sensitivity of the PCF-based MFPI is smaller than that of the SMF-based MFPI due to their different waveguide structures, while the two MFPIs have close temperature sensitivities which are much smaller than that of an in-line SMF etalon sensor reported previously. These MFPIs in silica fibers are compact, stable, inexpensive, capable for mass-production and easy fabrication, offering great potentials for wide sensing applications. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The robustness and prolongation of multiple filamentation (MF) for femtosecond laser propagation in air are investigated experimentally and numerically. It is shown that the number, pattern, propagation distance, and spatial stability of MF can be controlled by a variable-aperture on-axis pinhole. The random MF pattern can be optimized to a deterministic pattern. In our numerical simulations, we configured double filaments to principlly simulate the experimental MF interactions. It is experimentally and numerically demonstrated that the pinhole can reduce the modulational instability of MF and is favorable for a more stable MF evolution. (c) 2007 Optical Society of America.