989 resultados para Chemical solvents.
Resumo:
The growth of InAs quantum dots on vicinal GaAs (100) Substrates was systematically studied using low-pressure metalorganic chemical vapor deposition (MOCVD). The dots showed a clear bimodal size distribution on vicinal substrates. The way of evolution of this bimodal size distribution was studied as a function of growth temperature, InAs layer thickness and InAs deposition rate. The optical properties of dots grown on vicinal substrates were also studied by photoluminescence (PL). It was found that, compared with dots on exact substrates, dots on vicinal substrates had better optical properties such as a narrower PL line width, a longer emission wavelength, and a larger PL intensity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Al composition of metalorganic chemical vapor deposition (MOCVD)-grown AlGaN alloy layers is found to be greatly influenced by the parasitic reaction between ammonia (NH3) and trimethylaluminum (TMAI). The growth process of AlN is carefully investigated by monitoring the in situ optical reflection. The abnormal dependencies of growth rate on growth temperature, reactor pressure, and flux of NH3 are observed and can be well explained by the effect of parasitic reaction. The increase of growth rate with increasing flux of TMAI is found to depend on the growth temperature and reactor pressure due to the presence of parasitic effect. A relatively low growth temperature and a reduced reactor pressure are suggested for the effective decrease of parasitic reaction during the MOCVD growth of AlN and probably lead to a more effective incorporation of Al into the AlGaN layers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, about 30 mu m thick B-doped polycrystalline silicon (poly-Si) thin films were deposited on quartz substrates, n-type single crystalline silicon wafers and p(++)-type poly-Si ribbons by a rapid thermal chemical vapour deposition system in a temperature range from 1000 to 1150 degrees C. Activation energy measurement and room temperature/temperature dependent Hall effect measurement were performed on the poly-Si thin films prepared on the former two kinds of substrates, respectively. It seems that the electrical properties of as-prepared poly-Si thin films could be qualitatively explained by Seto's grain boundary (GB) trapping theory although there is a big difference between our samples and Seto's in gain size and film thickness etc. The experimental results reconfirm that GB itself is a kind of most effective recombination center with trapping level near the midgap and trapping state density in the order of 1012 cm(-2) magnitude. Electron beam induced current measurements on the poly-Si thin films prepared on the poly-Si ribbons also show that severe recombination occurs at the positions of GBs. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Polycrystalline silicon thin films were prepared by hot-wire chemical vapor deposition ( HWCVD) on glass at 250 degreesC with W or Ta wire as the catalyzers. The structual and optoelectronic properties as functions of the filament temperature, deposition pressure and the filament-substrate distance were studied, and the optimized polycrystalline silicon thin films were obtained with X-c > 90 % ( X-c denotes the crystalline ratio of the film), crystal grain size about 30-40nm, R-d approximate to 0.8nm/s, sigma(d) about 10(-7) - 10(-6) Omega(-1) cm(-1), Ea(a) approximate to 0.5eV and E-opt less than or equal to 1.3eV.
Resumo:
We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror (SESAM) from which we achieved a 10 ps pulse duration at 150 MHz repetition rate. The SESAM was grown by metal organic chemical vapour deposition at low temperature. The recovery time was measured to be 0.5 ps, indicating the potential pulse compression to sub-picoseconds.
Resumo:
We report the transmission-electron microscopy study of the defects in wurtzitic GaN films grown on Si(111) substrates with AIN buffer layers by the metal-organic chemical vapour deposition method. The In0.1Ga0.9N/GaN multiple quantum well (MQW) reduced the dislocation density by obstructing the mixed and screw dislocations passing through the MQW. No evident reduction of the edge dislocations density by the MQW was observed. It was found that dislocations with screw component can be located at the boundaries of sub-grains slightly in-plane misoriented.
Resumo:
We report the transmission electron microscopy (TEM) study of the microstructure of wurtzitic GaN films grown on Si(I I I) substrates with AlN buffer layers by metalorganic chemical vapor deposition (MOCVD) method. An amorphous layer was formed at the interface between Si and AlN when thick GaN film was grown. We propose the amorphous layer was induced by the large stress at the interface when thick GaN was grown. The In0.1Ga0.9N/GaN multiple quantum well (MQW) reduced the dislocation density by obstructing the mixed and screw dislocations from passing through the MQW. But no evident reduction of the edge dislocations by the MQW was observed. It was found that dislocations located at the boundaries of grains slightly in-plane misoriented have screw component. Inversion domain is also observed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Two Mg-doped GaN films with different doping concentrations were grown by a metalorganic chemical vapor deposition technique. Photoluminescence (PL) experiments were carried out to investigate the optical properties of these films. For highly Mg-doped GaN, the PL spectra at 10 K are composed of a blue luminescence (BL) band at 2.857 eV and two excitonic luminescence lines at 3.342 eV and 3.282 eV, in addition to a L2 phonon replica at 3.212 eV. The intensity of the L1 line decreases monotonously with an increase,in temperature. However, the intensity of the L2 line first slowly increases at first, and then decreases quickly with an increase in temperature. The two lines are attributed to bound excitonic emissions at extended defects. The BL band is most likely due to the transition from deep donor Mg-V-N complex to Mg shallow acceptor. From the temperature dependence of the luminescence peak intensity of the BL band, the activation energy of acceptor Mg was found to be 290 meV. (C) 2003 American Vacuum Society.
Resumo:
GaN1-xPx ternary alloys with high P compositions were deposited on sapphire substrates by means of metal-organic chemical vapor deposition. Depth profiles of the elements indicate that the maximum P/N composition ratio is about 17% and a uniform distribution of the P atoms in the alloys is achieved. 2theta/omega XRD spectra demonstrate that the (0002) peak of the GaN1-xPx alloys shifts to smaller angle with increasing P composition. From the photoluminescence (PL) spectra, the red shifts to the bandedge emission of GaN are determined to be 73, 78, 100 and 87 meV for the GaN1-xPx alloys with the P/N composition ratios of 3%, 11%, 15% and 17%, respectively. No PL peak related to GaP is observed, indicating that the phase separation between GaN and GaP is well suppressed in our GaN1-xPx samples. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The reduction of residual strain in cubic GaN growth by inserting a thermoannealing process is investigated. It is found that the epilayer with smaller tensile strain is subject to a wider optimal "growth window." Based on this process, we obtain the high-quality GaN film of pure cubic phase with the thickness of 4 mum by metalorganic chemical vapor deposition. The photoluminescence spectrum at room temperature shows the thick GaN layer has a near-band emission peak with a full width at half maximum of 42 meV which confirms its high crystal quality, further supported by the x-ray (002) diffraction measurement. A simplified model is demonstrated to interpret this strain effect on the growth process. (C) 2003 American Institute of Physics.
Resumo:
Investigations on photoluminescence properties of (11 (2) over bar0) GaN grown on (1 (1) over bar 02) Al2O3 substrate by metalorganic chemical-vapor deposition are reported. Several emission lines not reported before are observed at low temperature. The sharp peak at 3.359 eV is attributed to the exciton bound to the neutral acceptor. Another peak at 3.310 eV represents a free-to-bound, probably a free electron-to-acceptor, transition. The 3.241 and 3.170 eV lines are interpreted as phonon replica lines of the 3.310 eV line. The phonon energy is 70 meV, consistent with the energy of transverse optical E-1 phonon. The optical properties of the lines are analyzed. (C) 2003 American Institute of Physics.
Resumo:
The GaNAs alloys have been grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHv) as the nitrogen precursor, triethylgallium (TEGa) and trimethylgallium (TMGa) as the gallium precursors, respectively. Both symmetric (004) and asymmetric (1 1 5) high-resolution X-ray diffraction (HRXRD) were used to determine the nitrogen content in GaNAs layers. Secondary ion mass spectrometry (SIMS) was used to obtain the impurity content. T e influence of different Ga precursors on GaNAs quality has been investigated. Phase separation is observed in the < 1 1 5 > direction when using TMGa as the Ga precursor but not observed when using TEGa. This phenomenon should originate from the parasitic reaction between the Ga and N precursors. Furthermore. samples grown with TEGa have better quality and less impurity contamination than those with TMGa. Nitrogen content of 5.742% has been achieved using TEGa and no phase separation observed in the sample. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nanocrystalline diamond films were grown by a two-step process on Si(1 0 0) substrate, which was first pretreated by pure carbon ions bombardment. The bombarded Si substrate was then transformed into a hot-filament chemical vapor deposition (HFCVD) system for further growth. Using the usual CH4/H-3 feed gas ratio for micro crystalline diamond growth, nanodiamond crystallites were obtained. The diamond nucleation density is comparable to that obtained by biasing the substrate. The uniformly distributed lattice damage is proposed to be responsible for the formation of the nanodiamond. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new method to form nanoscale InGaN quantum dots using MOCVD is reported, This method is much different from a method. which uses surfactant or the Stranski-Krastannow growth mode. The dots were formed by increasing the energy barrier for adatoms, which are hopping by surface passivation, and by decreasing the growth temperature. Thus, the new method can be called as a passivation-low-temperature method. Regular high-temperature GaN films were grown first and were passivated. A low-temperature thin layer of GaN dot was then deposited on the surface that acted as the adjusting layer. At last the high-density InGaN dots could be fabricated on the adjusting layer. Atomic force microscopy measurement revealed that InGaN dots were small enough to expect zero-dimensional quantum effects: The islands were typically 80 nm wide and 5 nm high. Their density was about 6 x 10(10) cm(-2). Strong photoluminescence emission from the dots is observed at room temperature, which is much stronger than that of the homogeneous InGaN film with the same growth time. Furthermore, the PL emission of the GaN adjusting layer shows 21 meV blueshift compared with the band edge emission of the GaN due to quantum confine effect. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The surfactant effect of isoelectronic indium doping during metalorganic chemical vapor deposition growth of cubic GaN on GaAs (1 0 0) substrates was studied. Its influence on the optical properties and surface morphology was investigated by using room-temperature photoluminescence (PL) and atomic force microscopy. It is shown that the sample with small amount of In-doping has a narrower PL linewidth, and a smoother surface than undoped cubic GaN layers. A slight red shift of the near-band-edge emission peak was observed. These results revealed that, for small TMIn flow rates, indium played the role of the surfactant doping and effectively improved the cubic GaN film quality; for large TMIn flow rates, the alloying formation of Ga1-xInxN might have occurred. (C) 2002 Elsevier Science B.V. All rights reserved.