971 resultados para Target organ damage
Resumo:
TiO2 films are deposited by electron beam evaporation as a function of oxygen partial pressure. The packing density, refractive index, and extinction coefficient all decrease with the increase of pressure, which also induces the change of the film's microstructure, such as the increase of voids and H2O concentration in the film. The laser-induced damage threshold (LIDT) of the film increases monotonically with the rise of pressure in this experiment. The porous structure and low nonstoichiometric defects absorption contribute to the film's high LIDT. The films prepared at the lowest and the highest pressure show nonstoichiometric and surface-defects-induced damage features, respectively.(C) 2007 American Institute of Physics.
Resumo:
HfO2 single layers, 800 run high-reflective (HR) coating, and 1064 ran HR coating were prepared by electron-beam evaporation. The laser-induced damage thresholds (LIDTs) and damage morphologies of these samples were investigated with single-pulse femtosecond and nanosecond lasers. It is found that the LIDT of the HfO2 single layer is higher than the HfO2-SiO2 HR coating in the femtosecond regime, while the situation is opposite in the nanosecond regime. Different damage mechanisms are applied to study this phenomenon. Damage morphologies of all samples due to different laser irradiations are displayed. (c) 2007 Optical Society of America.
Resumo:
Single layers and antireflection films were deposited by electron beam evaporation, ion assisted deposition and interrupted ion assisted deposition, respectively. Antireflection film of quite high laser damage threshold (18J/cm(2)) deposited by interrupted ion assisted deposition were got. The electric field distribution, weak absorption, and residual stress of films and their relations to damage threshold were investigated. It was shown that the laser induced damage threshold of film was the result of competition of disadvantages and advantages, and interrupted ion assisted deposition was one of the valuable methods for preparing high laser induced damage threshold films. (c) 2007 Optical Society of America
Resumo:
Este trabalho é fruto de uma pesquisa realizada a partir de reportagens e notícias veiculadas na mídia impressa e em redes sociais, de debates com conselheiros tutelares, do encontro com colegas psicólogos que são técnicos do conselho tutelar e da minha experiência como professora da rede municipal do RJ. Para tanto, utiliza algumas ferramentas da análise institucional de origem francesa como proposta por Lapassade e Lourau e contribuições de Guatarri sobre a produção de subjetividades, de Foucault sobre a sociedade disciplinar e Deleuze sobre as sociedades de controle. Para chegar ao cotidiano dos conselhos tutelares precisamos entender que ao longo dos anos 1990, com a implantação da doutrina neoliberal que reduziu investimentos na área social e instalou o chamado Estado mínimo no Brasil, vivemos um importante paradoxo segundo o qual, de um lado, tínhamos o ECA propondo a garantia de direitos por meio da participação democrática da sociedade civil em articulação com o governo e que previa um órgão - conselho tutelar - que deveria reivindicar direitos e, de outro, a política neoliberal, com seus ideais de desmobilização política, abandono das políticas sociais, privatização e individualização. No contato com conselhos tutelares de municípios de diversas regiões do país podemos perceber que este foi rapidamente distanciado das suas motivações políticas de mobilização da sociedade civil e transformado num "balcão de atendimento" cuja principal função passou a ser o atendimento dos "casos", ou seja, das demandas que lá chegam. Isso porque a "participação institucionalizada e regulada" (SCHEINVAR e LEMOS, 2012) acabou consolidando-se, já que participar deixou de ser um ato de intervenção dos movimentos sociais para se transformar numa simples adesão a campanhas propostas pelo sistema político. Hoje, podemos dizer que os conselheiros habitam o "mundo das faltas". Sendo assim, despotencializado o movimento reivindicativo acusa-se à falta de estrutura, do espaço físico, rede de atendimento, participação na elaboração da proposta orçamentária, política pública de qualidade, remuneração adequada, etc. E quem trabalha com a falta tem sempre o mesmo público alvo: a família pobre. As análises das práticas cotidianas dos conselheiros têm mostrado que os conselhos tutelares com o passar dos anos passaram a funcionar sob o tripé vigilância, enquadramento e punição. O termo "risco social" ou "vulnerabilidade social" é a cada dia mais difundido por conselheiros tutelares e especialistas da rede de atendimento que têm utilizado esse "rótulo" visando disciplinar e homogeneizar as pessoas em suas relações familiares como forma de enquadramento social.
Resumo:
Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The mechanism of improving 1064 nm, 12 ns laser-induced damage threshold (LIDT) of TiO2/SiO2 high reflectors (HR) prepared by electronic beam evaporation from 5.1 to 13.1 J/cm(2) by thermal annealing is discussed. Through optical properties, structure and chemical composition analysis, it is found that the reduced atomic non-stoichiometric defects are the main reason of absorption decrease and LIDT rise after annealing. A remarkable increase of LIDT is found at 300 degrees C annealing. The refractive index and film inhomogeneity rise, physical thickness decrease, and film stress changes from compress stress to tensile stress due to the structure change during annealing. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle psi about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum P-T relative to the direction of the incident beam, and the Feynman variable x(F). The sin psi* amplitudes are positive for pi(+) and K+ slightly negative for pi(-) and consistent with zero for K-, with particular P-T but weak x(F) dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Resumo:
Laser-induced damages to TiO2 single layers and TiO2/SiO2 high reflectors at laser wavelength of 1064 nm, 800 run, 532 urn, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO2 coatings are mainly thermally by damaged at long pulse (tau >= 220 ps). The damage shows ablation feature at 50 fs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A high laser-induced damage threshold (LIDT) TiO2/SiO2 high reflector (HR) at 1064 nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064 nm with a 12 ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO2 layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR. (C) 2008 American Institute of Physics.
Resumo:
Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
A model of plasma formation induced by UV nanosecond pulselaser interaction with SiO2 thin film based on nanoabsorber is proposed. The model considers the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO2 thin film, foreign inclusion which absorbs a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and consequently, the transformation of the initial transparent matrix into an absorptive medium around the inclusion, thus facilitates optical damage. Qualitative comparison with experiments is also provided. (C) 2008 Optical Society of America.
Resumo:
Ta2O5 films were deposited by conventional electron beam evaporation method and then annealed in air at different temperature from 873 to 1273 K. It was found that the film structure changed from amorphous phase to hexagonal phase when annealed at 1073 K, then transformed to orthorhombic phase after annealed at 1273 K. The transmittance was improved after annealed at 873 K, and it decreased as the annealing temperature increased further. The total integrated scattering (TIS) tests and AFM results showed that both scattering and root mean square (RMS) roughness of films increased with the annealing temperature increasing. X-ray photoelectron spectroscopy (XPS) analysis showed that the film obtained better stoichiometry and the O/Ta ratio increased to 2.50 after annealing. It was found that the laser-induced damage threshold (LIDT) increased to the maximum when annealed at 873 K, while it decreased when the annealing temperature increased further. Detailed damaged models dominated by different parameters during annealing were discussed. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
A series or Ta2O5 films with different SiO2 additional layers including overcoat, undercoat and interlayer was prepared by electron beam evaporation under the same deposition process. Absorption of samples was measured using the surface thermal lensing (STL) technique. The electric field distributions of the samples were theoretical predicted using thin film design software (TFCalc). The laser induced damage threshold (LIDT) was assessed using an Nd:YAG laser operating at 1064 nm with a pulse length of 12 ns. It was found that SiO2 additional layers resulted in a slight increase of the absorption, whereas they exerted little influence on the microdefects. The electric field distribution among the samples was unchanged by adding an SiO2 overcoat and undercoat, yet was changed by adding an interlayer. SiO2 undercoat. The interlayer improved the LIDT greatly, whereas the SiO2 overcoat had little effect on the LIDT. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO2/SiO2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N-2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings. (C) 2008 Elsevier B.V. All rights reserved.