1000 resultados para Mechanical cycling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform first-principles calculations of the structural, electronic, mechanical, and thermodynamic properties of thorium hydrides (ThH2 and Th4H15) based on the density functional theory with generalized gradient approximation. The equilibrium geometries, the total and partial densities of states, charge density, elastic constants, elastic moduli, Poisson's ratio, and phonon dispersion curves for these materials are systematically investigated and analyzed in comparison with experiments and previous calculations. These results show that our calculated equilibrium structural parameters are well consistent with experiments. The Th-H bonds in all thorium hydrides exhibit weak covalent character, but the ionic properties for ThH2 and Th4H15 are different due to their different hydrogen concentration. It is found that while in ThH2 about 1.5 electrons transfer from each Th atom to H, in Th4H15 the charge transfer from each Th atom is around 2.1 electrons. Our calculated phonon spectrum for the stable body-centered tetragonal phase of ThH2 accords well with experiments. In addition we show that ThH2 in the fluorite phase is mechanically and dynamically unstable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully 3-D atomistic quantum mechanical simulation is presented to study the random dopant-induced effects in nanometer metal-oxide-semiconductor field-effect transistors. The empirical pseudopotential is used to represent the single particle Hamiltonian, and the linear combination of bulk band method is used to solve the million atom Schrodinger equation. The gate threshold fluctuation and lowering due to the discrete dopant configurations are studied. It is found that quantum mechanical effects increase the threshold fluctuation while decreasing the threshold lowering. The increase of threshold fluctuation is in agreement with the researchers' early study based on an approximated density gradient approach. However, the decrease in threshold lowering is in contrast with the density gradient calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

电子邮箱nataliya.deyneka@uni-ulm.de

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure, elastic constants, Poisson's ratio, and phonon dispersion curves of UC have been systematically investigated from the first-principles calculations by the projector-augmented-wave (PAW) method. In order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the local density approximation (LDA) + U and generalized gradient approximation (GGA) + U formalisms for the exchange correlation term. We systematically study how the electronic properties and elastic constants of UC are affected by the different choice of U as well as the exchange-correlation potential. We show that by choosing an appropriate Hubbard U parameter within the GGA + U approach, most of our calculated results are in good agreement with the experimental data. Therefore. the results obtained by the GGA + U with effective Hubbard parameter U chosen around 3 eV for UC are considered to be reasonable. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the deformation mechanisms of nonpolar GaN thick films grown on m-sapphire by hydride vapor phase epitaxy (HVPE) are investigated using nanoindentation with a Berkovich indenter, cathodoluminescence (CL), and Raman microscopy. Results show that nonpolar GaN is more susceptible to plastic deformation and has lower hardness than c-plane GaN. After indentation, lateral cracks emerge on the nonpolar GaN surface and preferentially propagate parallel to the < 11 (2) over bar0 > orientation due to anisotropic defect-related stresses. Moreover, the quenching of CL luminescence can be observed to extend exclusively out from the center of the indentations along the < 11 (2) over bar0 > orientation, a trend which is consistent with the evolution of cracks. The recrystallization process happens in the indented regions for the load of 500 mN. Raman area mapping indicates that the distribution of strain field coincides well with the profile of defect-expanded dark regions, while the enhanced compressive stress mainly concentrates in the facets of the indentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomistic pseudopotential quantum mechanical calculations are used to study the transport in million atom nanosized metal-oxide-semiconductor field-effect transistors. In the charge self-consistent calculation, the quantum mechanical eigenstates of closed systems instead of scattering states of open systems are calculated. The question of how to use these eigenstates to simulate a nonequilibrium system, and how to calculate the electric currents, is addressed. Two methods to occupy the electron eigenstates to yield the charge density in a nonequilibrium condition are tested and compared. One is a partition method and another is a quasi-Fermi level method. Two methods are also used to evaluate the current: one uses the ballistic and tunneling current approximation, another uses the drift-diffusion method. (C) 2009 American Institute of Physics. [doi:10.1063/1.3248262]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN epitaxy films were grown on (0001) oriented sapphire substrate by metal-organic vapor deposition(MOCVD). AFM and SEM were used to analyze the surface morphology of GaN films. Hardness and critical load of GaN films were measured by an nano-indentation tester, friction coefficient by reciprocating UMT-2MT tribometer. It is found that the surface of GaN film is smooth and the epitaxial growth mechanism is in two-dimension mode, GaN epitaxy films also belong to ultra-hardness materials, whose hardness is 22.1 MPa and elastic modulus is 299.5 GPa. Adhesion strength of epitaxial GaN to sapphire is high, and critical load reaches 1.6 N. Friction coefficient against GCr15 ball is steadily close to 0.13, while GaN films turns to be broken rapidly by using Si3N4 ceramic ball as counterpart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomistic pseudopotential quantum mechanical calculations for million atom nanosized metal-oxide-semiconductor field-effect transistors (MOSFETs) are presented. When compared with semiclassical Thomas-Fermi simulation results, there are significant differences in I-V curve, electron threshold voltage, and gate capacitance. In many aspects, the quantum mechanical effects exacerbate the problems encountered during device minimization, and it also presents different mechanisms in controlling the behaviors of a nanometer device than the classical one. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ball milling of Fe-24Mn and Fe-24Mn-6Si mixed powders has been performed by the high energy ball milling technique. By employing X-ray diffraction and Mossbauer measurements, the composition evolution during the milling process has been investigated. The results indicate the formation of paramagnetic Fe-Mn or Fe-Mn-Si alloys with a metastable fee phase as final products, which imply that the Fe and Mn proceed a co-diffusion mechanism through the surface of fragmented powders. The thermal stability and composition evolution of the as-milled alloys were discussed comparing with the bulk alloy. (C) 1999 Published by Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro and nanomechanical resonators are powerful and label-free sensors of analytes in various environments. Their response, however, is a convolution of mass, rigidity, and nanoscale heterogeneity of adsorbates. Here we demonstrate a procedure to disentangle this complex sensor response, to simultaneously measure both mass and elastic properties of nanometer thick samples. This turns an apparent disadvantage of these resonators into a striking and unique asset, enabling them to measure more than mass alone.