995 resultados para a-Si film
Resumo:
Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.
Resumo:
The mechanical properties of film-substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol., 191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1-0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film-substrate nano-indentation experiments. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The close form solutions of deflections and curvatures for a film-substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film-substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film-substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film-substrate composite structure with the presence of gradient stress.
Resumo:
本文测量了砷离子(As~+)注入的Si在连续CO_2激光辐照下光的椭圆偏振参数、反射率、表面薄层电阻率随时间的变化。从(?)、△、R、ρ的变化看出Si注入层的激光退火是在一定的时间、温度条件下迅速完成的。
Resumo:
本文研究了高温高浓度扩硼Si在连续CO_2激光辐照后表面薄层电阻随激光功率密度和扫描速度的变化.实验发现,一定功率密度和扫描速度的CO_2激光辐照可使扩硼Si的载流子面密度提高到原来的一倍半到三倍左右.
Resumo:
<正> 用强激光辐照的方法对集成电路用的离子注入Si进行退火是近几年大力研究的一个问题。至今为止绝大多数的激光退火都是采用红宝石、YAG、氩离子等波长较短的激光器。实验虽已证实CO_2激光的退火效果完全可与其他激光比美,然而研究者甚少,且基本上限于最后结果的观测。激光作为电磁波,其趋肤深度