989 resultados para Er:YAG Lasers
Resumo:
We derive formulas for the optical confinement factor Gamma from Maxwell's equations for TE and TM modes in the slab waveguide. The numerical results show that the formulas yield correct mode gain for the modes propagating in the waveguide. We also compare the formulas with the standard definition of Gamma as the ratio of power flow in the active region to the total power flow. The results show that the standard definition will underestimate the difference of optical confinement factors between TE and TM modes, and will underestimate the difference of material gains necessary for polarization insensitive semiconductor laser amplifiers. It is important to use correct optical confinement factors for designing polarization insensitive semiconductor laser amplifiers. For vertical cavity surface-emitting lasers, the numerical results show that Gamma can be defined as the proportion of the product of the refractive index and the squared electric field in the active region. (C) 1996 American Institute of physics.
HIGH-EFFICIENCY TOP SURFACE-EMITTING LASERS FABRICATED BY 4 IMPLANTATION USING TUNGSTEN WIRE AS MASK
Resumo:
We report the results of a high efficiency room temperature continuous wave (cw) vertical-cavity surface-emitting laser. The structure is obtained by four deep H+ implantation using tungsten wires as the mask. The fabrication process is the simplest ever reported in vertical-cavity surface-emitting laser fabrication. The largest differential quantum efficiency of 65% and maximum cw light output power over 4 mW have been achieved for the 15X15 mu m(2) device. (C) 1995 American Institute of Physics.
Resumo:
We have implemented and studied a new type of tunable multiple-section semiconductor distributed feedback (DFB) laser using tailored chirped DFB gratings. Arbitrarily and continuously chirped DFB gratings are defined by bent waveguides on homogeneous grating fields with ultrahigh spatial precision, The mathematical bending functions are optimized in this case to provide enlarged wavelength tuning ranges. We present the results of model calculations, the technological device realization and experimental results of the DFB laser characterization e.g. a tuning range of 5.5 mm without wavelength gaps and high side mode suppression ratio.
Resumo:
The rate equations used for measuring spontaneous emission factor beta is examined through the comparison of numerical results, The results show that beta obtained by using total spontaneous emission rate R(sp) = N/tau sp is about double of that using R(sp) = BN2, The magnitude difference between the measured beta and that predicted by classical theory [8] will disappear by using more reasonable R(sp) = BN2. The results also show that the magnitude of beta may be underestimated by ignoring the nonradiative recombination rates.
Resumo:
Vertical cavity surface emitting lasers operating in the 1.3- and 1.5-mu m wavelength ranges are highly attractive for telecommunications applications. However, they are far less well-developed than devices operating at shorter wavelengths. Pulsed electrically-injected lasing at 1.5 mu m, at temperatures up to 240 K, is demonstrated in a vertical-cavity surface-emitting laser with one epitaxial and one dielectric reflector. This is an encouraging result in the development of practical sources for optical fiber communications systems.
Resumo:
Er-doped silicon-rich silicon nitride (SRN) films were deposited on silicon substrate by an RF magnetron reaction sputtering system. After high temperature annealing, the films show intense photoluminescence in both the visible and infrared regions. Besides broad-band luminescence centered at 780 nm which originates from silicon nanocrystals, resolved peaks due to transitions from all high energy levels up to ~2H_(11/2) to the ground state of Er~(3+) are observed. Raman spectra and HRTEM measurements have been performed to investigate the structure of the films, and possible excitation processes are discussed.
Resumo:
简述了近年来国内外掺Er光纤(EDF)光源的最新发展,详细分析了EDF光源的工作原理;介绍了EDF的基本结构,并概述了其各自的特点;总结了当前几种重要的EDF光源及其研究状况;指出了未来EDF光源发展方向。
Resumo:
Square microcavity laser with an output waveguide is proposed and analyzed by the finite-difference time-domain (FDTD) technique. For a square resonator with refractive index of 3.2, side length of 4 microns, and output waveguide of 0.4-micron width, we have got the quality factors (Q factors) of 6.7×10~2 and 7.3×10~3 for the fundamental and first-order transverse magnetic (TM) mode near the wavelength of 1.5 microns, respectively. The simulated intensity distribution for the first-order TM mode shows that the coupling efficiency in the waveguide reaches 53%. The numerical simulation shows that the first-order transverse modes have fairly high Q factor and high coupling efficiency to the output waveguide. Therefore the square resonator with an output waveguide is a promising candidate to realize single-mode directional emission microcavity lasers.
Resumo:
利用Raman散射谱研究了GaN注Er以及Er+O共注样品的振动模,并讨论了共注入O对Er离子发光的影响. 在Raman散射谱中,对于注Er的GaN样品出现了300 cm~(-1)和670 cm~(-1)两个新的Raman峰,而对于Er+O共注样品,除了上述两个峰外,在360 cm~(-1)处出现了另外一个新的峰,其中300 cm~(-1)峰可以用disorder-activated Raman scattering (DARS)来解释,670 cm~(-1)峰是由于与N空位相关的缺陷引起的,而360 cm~(-1)峰是由O注入引起的缺陷络合物产生的. 由于360 cm~(-1)模的缺陷出现,从而导致Er+O共注入GaN薄膜红外光致发光(PL)强度的下降
Resumo:
利用深能级瞬态谱(DLTS)、傅里叶变换红外光谱(FT-IR)对GaN以及GaN掺Er/Pr的样品进行了电学和光学特性分析.研究发现未掺杂的GaN样品只在导带下0.270eV处有一个深能级;GaN注入Er经900℃,30min退火后的样品出现了四个深能级,能级位置位于导带下0.300eV,0.188eV,0.600eV和0.410eV;GaN注入Pr经1050℃,30min退火后的样品同样出现了四个深能级。能级位置位于导带下0.280eV,0.190eV,0.610eV和0.390eV;对每一个深能级的来源进行了讨论.光谱研究表明,掺Er的GaN样品经900℃,30min退火后,可以观察到Er的1538nm处的发光。而且对能量输运和发光过程进行了讨论.
Resumo:
A flash-lamp-pumped Nd
Resumo:
A two-section offset quantum-well structure tunable laser with a tuning range of 7 nm was fabricated using offset quantum-well inethod. The distributed Bragg reflector (DBR) was realized just by selectively wet etching the multiquantum-well (MQW) layer above the quaternary lower waveguide. A threshold current of 32 mA and an output power of 9 mW at 100 mA were achieved. Furthermore, with this offset structure method, a distributed feedback (DFB) laser was integrated with an electro-absorption modulator (EAM), which was capable of producing 20 dB of optical extinction.
Resumo:
The principle of step-scan Fourier transform infrared (FTIR) spectroscopy is introduced. Double modulation step-scan FTIR technique is used to obtain the quantum cascade laser's stacked emission spectra in the time domain. Optical property and thermal accumulation of devices due to large drive current are analyzed.
Resumo:
Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperature is reported. Accurate control of layer thickness and strain-compensated material composition is demonstrated using X-ray diffraction. An output power of at least 45mW per facet is realized for a 20μm-wide and 2mm-long laser at room temperature.
Resumo:
Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.