986 resultados para Poisson Algebra
Resumo:
In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.
Resumo:
The purpose of this short note is to prove that a stable separable C*-algebra with real rank zero has the so-called corona factorization property, that is, all the full multiplier projections are properly in finite. Enroute to our result, we consider conditions under which a real rank zero C*-algebra admits an injection of the compact operators (a question already considered in [21]).
Resumo:
In this paper, results known about the artinian and noetherian conditions for the Leavitt path algebras of graphs with finitely many vertices are extended to all row-finite graphs. In our first main result, necessary and sufficient conditions on a row-finite graph E are given so that the corresponding (not necessarily unital) Leavitt path K-algebra L(E) is semisimple. These are precisely the algebras L(E)for which every corner is left (equivalently, right)artinian. They are also precisely the algebras L(E) for which every finitely generated left (equivalently, right) L(E)-module is artinian. In our second main result, we give necessary and sufficient conditions for every corner of L(E) to be left (equivalently, right) noetherian. They also turn out to be precisely those algebras L(E) for which every finitely generated left(equivalently, right) L(E)-module is noetherian. In both situations, isomorphisms between these algebras and appropriate direct sums of matrix rings over K or K[x, x−1] are provided. Likewise, in both situations, equivalent graph theoretic conditions on E are presented.
Resumo:
We prove a double commutant theorem for hereditary subalgebras of a large class of C*-algebras, partially resolving a problem posed by Pedersen[8]. Double commutant theorems originated with von Neumann, whose seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu proved a C*-algebraic double commutant theorem for separable subalgebras of the Calkin algebra. We prove a similar result for hereditary subalgebras which holds for arbitrary corona C*-algebras. (It is not clear how generally Voiculescu's double commutant theorem holds.)
Resumo:
Let A be a semiprime 2 and 3-torsion free non-commutative associative algebra. We show that the Lie algebra Der(A) of(associative) derivations of A is strongly non-degenerate, which is a strong form of semiprimeness for Lie algebras, under some additional restrictions on the center of A. This result follows from a description of the quadratic annihilator of a general Lie algebra inside appropriate Lie overalgebras. Similar results are obtained for an associative algebra A with involution and the Lie algebra SDer(A) of involution preserving derivations of A
Resumo:
En aquest treball s’implementa un model analític de les característiques DC del MOSFET de doble porta (DG-MOSFET), basat en la solució de l’equació de Poisson i en la teoria de deriva-difussió[1]. El MOSFET de doble porta asimètric presenta una gran flexibilitat en el disseny de la tensió llindar i del corrent OFF. El model analític reprodueix les característiques DC del DG-MOSFET de canal llarg i és la base per construir models circuitals tipus SPICE.
Resumo:
We extend the theory of Quillen adjunctions by combining ideas of homotopical algebra and of enriched category theory. Our results describe how the formulas for homotopy colimits of Bousfield and Kan arise from general formulas describing the derived functor of the weighted colimit functor.
Resumo:
In a recent paper Iyama and Yoshino consider two interesting examples of isolated singularities over which it is possible to classify the indecomposable maximal Cohen-Macaulay modules in terms of linear algebra data. In this paper we present two new approaches to these examples. In the first approach we give a relation with cluster categories. In the second approach we use Orlov's result on the graded singularity category. We obtain some new results on the singularity category of isolated singularities which may be interesting in their own right.
Resumo:
We show that H-spaces with finitely generated cohomology, as an algebra or as an algebra over the Steenrod algebra, have homotopy exponents at all primes. This provides a positive answer to a question of Stanley.
Resumo:
This empirical work studies the influence of immigrant students on individuals’ school choice in one of the most populated regions in Spain: Catalonia. It has estimated, following the Poisson model, the probability that a certain school, which immigrant students are already attending, may be chosen by natives as well as by immigrants, respectively. The information provided by the Catalonia School Department presents school characteristics of all the primary and secondary schools in Catalonia during the 2001/02 and 2002/03 school years. The results obtained support the evidence that Catalonia native families avoid schools attended by immigrants. Natives certainly prefer not to interact with immigrants. Private schools are more successful in avoiding immigrants. Finally, the main reason for non-natives’ choice is the presence of other non-natives in the same school.
Resumo:
We give sufficient conditions for homotopical localization functors to preserve algebras over coloured operads in monoidal model categories. Our approach encompasses a number of previous results about preservation of structures under localizations, such as loop spaces or infinite loop spaces, and provides new results of the same kind. For instance, under suitable assumptions, homotopical localizations preserve ring spectra (in the strict sense, not only up to homotopy), modules over ring spectra, and algebras over commutative ring spectra, as well as ring maps, module maps, and algebra maps. It is principally the treatment of module spectra and their maps that led us to the use of coloured operads (also called enriched multicategories) in this context.
Resumo:
BACKGROUND: Inflammatory bowel disease can decrease the quality of life and induce work disability. We sought to (1) identify and quantify the predictors of disease-specific work disability in patients with inflammatory bowel disease and (2) assess the suitability of using cross-sectional data to predict future outcomes, using the Swiss Inflammatory Bowel Disease Cohort Study data. METHODS: A total of 1187 patients were enrolled and followed up for an average of 13 months. Predictors included patient and disease characteristics and drug utilization. Potential predictors were identified through an expert panel and published literature. We estimated adjusted effect estimates with 95% confidence intervals using logistic and zero-inflated Poisson regression. RESULTS: Overall, 699 (58.9%) experienced Crohn's disease and 488 (41.1%) had ulcerative colitis. Most important predictors for temporary work disability in patients with Crohn's disease included gender, disease duration, disease activity, C-reactive protein level, smoking, depressive symptoms, fistulas, extraintestinal manifestations, and the use of immunosuppressants/steroids. Temporary work disability in patients with ulcerative colitis was associated with age, disease duration, disease activity, and the use of steroids/antibiotics. In all patients, disease activity emerged as the only predictor of permanent work disability. Comparing data at enrollment versus follow-up yielded substantial differences regarding disability and predictors, with follow-up data showing greater predictor effects. CONCLUSIONS: We identified predictors of work disability in patients with Crohn's disease and ulcerative colitis. Our findings can help in forecasting these disease courses and guide the choice of appropriate measures to prevent adverse outcomes. Comparing cross-sectional and longitudinal data showed that the conduction of cohort studies is inevitable for the examination of disability.
Resumo:
It has been recently found that a number of systems displaying crackling noise also show a remarkable behavior regarding the temporal occurrence of successive events versus their size: a scaling law for the probability distributions of waiting times as a function of a minimum size is fulfilled, signaling the existence on those systems of self-similarity in time-size. This property is also present in some non-crackling systems. Here, the uncommon character of the scaling law is illustrated with simple marked renewal processes, built by definition with no correlations. Whereas processes with a finite mean waiting time do not fulfill a scaling law in general and tend towards a Poisson process in the limit of very high sizes, processes without a finite mean tend to another class of distributions, characterized by double power-law waiting-time densities. This is somehow reminiscent of the generalized central limit theorem. A model with short-range correlations is not able to escape from the attraction of those limit distributions. A discussion on open problems in the modeling of these properties is provided.
Resumo:
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defined by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincaré-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.