Point-occurrence self-similarity in crackling-noise systems and in other complex systems


Autoria(s): Corral, Álvaro
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/10/2008

Resumo

It has been recently found that a number of systems displaying crackling noise also show a remarkable behavior regarding the temporal occurrence of successive events versus their size: a scaling law for the probability distributions of waiting times as a function of a minimum size is fulfilled, signaling the existence on those systems of self-similarity in time-size. This property is also present in some non-crackling systems. Here, the uncommon character of the scaling law is illustrated with simple marked renewal processes, built by definition with no correlations. Whereas processes with a finite mean waiting time do not fulfill a scaling law in general and tend towards a Poisson process in the limit of very high sizes, processes without a finite mean tend to another class of distributions, characterized by double power-law waiting-time densities. This is somehow reminiscent of the generalized central limit theorem. A model with short-range correlations is not able to escape from the attraction of those limit distributions. A discussion on open problems in the modeling of these properties is provided.

Formato

19

148759 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/15543

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;834

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #68 - Indústries, oficis i comerç d'articles acabats. Tecnologia cibernètica i automàtica
Tipo

info:eu-repo/semantics/preprint