922 resultados para Particle-size


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cutting fluids are lubricants used in metal-mechanical industries. Their complex composition varies according to the type of operation carried out, also depending on the metals under treatment or investigation. Due to the high amount of mineral oil produced in Northeastern Brazil, we have detected the need to better use this class of material. In this work, two novel formulations have been tested, both based on naphthenic mineral oil and additives, such as: an emulsifying agent (A), an anticorrosion agent (B), a biocide (C) and an antifoam agent (D). Each formulation was prepared by mixing the additives in the mineral oil at a 700-rpm stirring velocity for 10 min, at 25°C, employing a 24 factorial planning. The formulations were characterized by means of density, total acid number (TAN), viscosity, flash point and anticorrosion activity. In a subsequent study, oil-in-water emulsions were prepared from these novel formulations. The emulsions were analyzed in terms of stability, corrosion degree, percentage of foam formation, conductivity, accelerated stability and particle size. The samples were appropriately labeled, and, in special, two of them were selected for featuring emulsion properties which were closer to those of the standards chosen as references (commercial cutting oils). Investigations were undertaken on the ability of NaCl and CaCl2 to destabilize the emulsions, at concentrations of 2%, 5% and 10%, at an 800-rpm stirring velocity for 5 min and temperatures of 25º, 40º, 50º and 60ºC. The recovered oils were chemically altered by reincorporating the same additives used in the original formulations, followed by preparation of emulsions with the same concentrations as those of the initial ones. The purpose was to assess the possibility of reusing the recovered oil. The effluents generated during the emulsion destabilization step were characterized via turbidity index, contents of oil and grease, pH, and contents of anions and cations, observing compliance with the parameters established by the current environmental legislation (Brazil s CONAMA 357/05 resolution). It could be concluded that the formulations presented excellent physicochemical properties as compared to commercial cutting fluids, showing that the quality of the newly-prepared fluids is superior to that of the formulations available in the market, enabling technically and environmentally-safe applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker suspensions were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray diffraction. Results showed that it was possible to obtain ultrathin cellulose nanowhiskers with diameters as low as 5 nm and aspect ratio of up to 60. A possible correlation between preparation conditions and particle size was not observed. Higher residual lignin content was found to increase thermal stability indicating that by controlling reaction conditions one can tailor the thermal properties of the nanowhiskers. Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research the removal of light and heavy oil from disintegrated limestone was investigated with use of microemulsions. These chemical systems were composed by surfactant, cosurfactant, oil phase and aqueous phase. In the studied systems, three points in the water -rich microemulsion region of the phase diagrams were used in oil removal experiments. These microemulsion systems were characterized to evaluate the influence of particle size, surface tension, density and viscosity in micellar stability and to understand how the physical properties can influence the oil recovery process. The limestone rock sample was characterized by thermogravimetry, BET area, scanning electron microscopy and X-ray fluorescence. After preparation, the rock was placed in contact with light and heavy oil solutions to allow oil adsorption. The removal tests were performed to evaluate the influence of contact time (1 minute, 30 minutes, 60 minutes and 120 minutes), the concentration of active matter (20, 30 and 40 %), different cosurfactants and different oil phases. For the heavy oil, the best result was on SME 1, with 20 % of active matter, 1 minute of contact time, with efficiency of 93,33 %. For the light oil, also the SME 1, with 20 % of active matter, 120 minutes of contact time, with 62,38 % of efficiency. From the obtained results, it was possible to conclude that microemulsions can be considered as efficient chemical systems for oil removal from limestone formations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho objetivou estudar a reatividade de uma escória de siderurgia de aciaria, em diferentes frações granulométricas, aplicada em uma amostra de um Latossolo Vermelho distrófico, ácido, em condições de laboratório. Utilizou-se um fatorial 4 x 3 + 2 com quatro repetições, sendo quatro granulometrias (material retido entre as peneiras ABNT 5-10; 10-20; 20-50 e < 50), três doses de escória, correspondentes a 0,00, 5,04 e 10,08 t ha-1, ou seja, 0,00, 1,01 e 2,02 g por copo com 0,40 dm³ de solo e duas testemunhas (escória e calcário dolomítico, na dose correspondente a V = 70 %, ou seja, 1,01 e 0,60 g por copo, respectivamente). Para definir as doses, adotou-se o método da saturação por bases, considerando-se o valor do PRNT da escória e do calcário, obtidos na granulometria correspondente. O solo foi mantido na capacidade de campo e incubado durante os períodos de três, seis e nove meses. As frações granulométricas da escória influiram diferentemente na acidez do solo. A fração retida entre as peneiras ABNT 5-10 mostrou-se ineficiente, enquanto a fração que passa pela peneira ABNT 50 foi a que conferiu o maior efeito na neutralização da acidez. A reatividade das partículas da escória retidas nas peneiras intermediárias, ABNT 10-20 e 20-50, foi proporcional aos valores vigentes na legislação brasileira para calcários. Portanto, a taxa de reatividade obtida para a escória foi de: ABNT nº 5-10 = 0 %; 10-20 = 22 %; 20-50 = 58 % e < 50 = 100 %.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The environmental impact due to the improper disposal of metal-bearing industrial effluents imposes the need of wastewater treatment, since heavy metals are nonbiodegradable and hazardous substances that may cause undesirable effects to humans and the environment. The use of microemulsion systems for the extraction of metal ions from wastewaters is effective when it occurs in a Winsor II (WII) domain, where a microemulsion phase is in equilibrium with an aqueous phase in excess. However, the microemulsion phase formed in this system has a higher amount of active matter when compared to a WIII system (microemulsion in equilibrium with aqueous and oil phases both in excess). This was the reason to develop a comparative study to evaluate the efficiency of two-phases and three-phases microemulsion systems (WII and WIII) in the extraction of Cu+2 and Ni+2 from aqueous solutions. The systems were composed by: saponified coconut oil (SCO) as surfactant, n-Butanol as cosurfactant, kerosene as oil phase, and synthetic solutions of CuSO4.5H2O and NiSO4.6H2O, with 2 wt.% NaCl, as aqueous phase. Pseudoternary phase diagrams were obtained and the systems were characterized by using surface tension measurements, particle size determination and scanning electron microscopy (SEM). The concentrations of metal ions before and after extraction were determined by atomic absorption spectrometry. The extraction study of Cu+2 and Ni+2 in the WIII domain contributed to a better understanding of microemulsion extraction, elucidating the various behaviors presented in the literature for these systems. Furthermore, since WIII systems presented high extraction efficiencies, similar to the ones presented by Winsor II systems, they represented an economic and technological advantage in heavy metal extraction due to a small amount of surfactant and cosurfactant used in the process and also due to the formation of a reduced volume of aqueous phase, with high concentration of metal. Considering the reextraction process, it was observed that WIII system is more effective because it is performed in the oil phase, unlike reextraction in WII, which is performed in the aqueous phase. The presence of the metalsurfactant complex in the oil phase makes possible to regenerate only the surfactant present in the organic phase, and not all the surfactant in the process, as in WII system. This fact allows the reuse of the microemulsion phase in a new extraction process, reducing the costs with surfactant regeneration

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the coprecipitation synthesis method for preparation of ceramic materials with perovskite structure, their characterization and application as catalytic material in the reaction of converting CO to CO2 developing a methodological alternative route of synthesis from the middle via oxalate coprecipitation material SrCo0,8Fe0,2O3-d. In order to check the influence of this method, it was also synthesized using a combined citrate - EDTA complexing method. The material was characterized by: X-ray diffraction (XRD), Rietveld refinement method, thermogravimetry and differential thermo analysis (TG / DTA), scanning (SEM) and transmission (TEM) electron microscopy, particle size distribution and surface analysis method BET. Both methods led to post-phase synthesis, with pH as a relevant parameter. The synthesis based on the method via oxalate coprecipitation among particles led to the crystalline phase as those obtained using a combined citrate - EDTA complexing method under the same conditions of heat treatment. The nature of the reagent used via oxalate coprecipitation method produced a material with approximately 80 % lower than the average size of crystallites. Moreover, the via oxalate coprecipitation method precursors obtained in the solid state at low temperature (~ 26 oC), shorter synthesis, greater thermal stability and a higher yield of around 90-95 %, maintaining the same order of magnitude the crystallite size that the combined citrate - EDTA complexing method. For purposes of comparing the catalytic properties of the material was also synthesized by the using a combined citrate - EDTA complexing method. The evaluation of catalytic materials SrCo0,8Fe0,2O3-d LaNi0,3Co0,7O3-d was accompanied on the oxidation of CO to CO2 using a stainless steel tubular reactor in the temperature range of 75-300 oC. The conversion CO gas was evaluated in both materials on the results shaved that the firm conversion was loves for the material LaNi0,3Co0,7O3-d

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we obtain nickel ferrite by the combustion synthesis method whcih involves synthesising in an oven at temperatures of 750oC, 950oC and 125oC. The precursors oxidizing used were nickel nitrate, ferric as an oxidizing and reducing urea (fuel). After obtaining the mixture, the product was deagglomerated and past through a 270 mesh sieve. To assess the structure, morphology, particle size, magnetic and electrical properties of nanoparticles obtained the samples were sintered and characterized by x-ray distraction (XRD), x-ray fluorescence spectroscopy (FRX); scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), vibrating sample magnetometer (MAV ) and electrical permittivity. The results indicated the majority of phase inverse spinel ferrite and Hematite secondary phase nickel and nickel oxide. Through the intensity of the distraction, the average size of the crystallization peaks were half-height width which was calculated using the Scherrer equation. From observing the peaks of all the reflections, it appears that samples are crystal clear with the formation of nanoparticles. Morphologically, the nanoferritas sintered nickel pellet formation was observed with three systems of particle size below 100mn, which favored the formation of soft pellets. The average size of the grains in their micrometric scale. FRX and EDS showed qualitatively the presence of iron elements nickel and oxygen, where through quantitative data we can observe the presence of the secondary phase. The magnetic properties and the saturation magnetization and the coercive field are in accordance with the nickel, ferrite where the curve of hysteresis has aspects of a soft material. Dielectric constant values are below 10 and low tangent loss

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study carried out in the environment of Maracajaú reef an São Roque channel, had as main objective to analyze the characteristics of sediments active locally expressed in the grains, through collections of sediments in the field, technical processing and data analyzes of sediments. Data processing were made on three main aspects: biotic composition, concentration of calcium carbonate and particle size of the sediment. Differences between the sediments of the reefs and channel were observed. It was emphasized the contribution of algae limestone in the production of carbonate, with some influence of foraminifera near the coast. The particle size distribution presented significant results for the understanding of locally sedimentary deposits. The results showed an environment of carbonate, with predominance of algae limestone, associated to unconsolidated sediments with gross granularity, besides the presence of rhodoliths in all samples.The fragmentation of biotic components and the prevalence of elliptical rhodoliths with little or no branch, indicate an environment of high energy hydrodynamics. This work is a further contribution to the understanding of sedimentology active locally in reef environments, in particular the of Maracajaú reef, by virtue of their complex ecosystem composed of a diversity of wild fauna and flora that still little studied in Brazil comparing to accelerated growth of teeth extractions and usufructs of natural resources causing often irreversible impacts to the environment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study had to aimed to characterize the sediments of shallow continental shelf and realize the mapping of features visible for satellite images by using remote sensing techniques, digital image processing and analysis of bathymetry between Maxaranguape and Touros - RN. The study s area is located in the continental shallow shelf of Rio Grande do Norte, Brazil, and is part of the Environmental Protection Area (APA) of Coral Reefs. A total of 1186 sediment samples were collected using a dredge type van veen and positioning of the vessel was made out with the aid of a Garmin 520s. The samples were treated In the laboratory to analyze particle size of the sediment, concentration of calcium carbonate and biogenic composition. The digital images from the Landsat-5 TM were used to mapping of features. This stage was used the band 1 (0,45-1,52 μm) where the image were georeferenced, and then adjusting the histogram, giving a better view of feature bottom and contacts between different types of bottom. The results obtained from analysis of the sediment showed that the sediments of the continental shelf east of RN have a dominance of carbonate facies and a sand-gravelly bottom because the region is dominated by biogenic sediments, that are made mainly of calcareous algae. The bedform types identified and morphological features found were validated by bathymetric data and sediment samples examined. From the results obtained a division for the shelf under study is suggested, these regions being subdivided, in well characterized: (1) Turbid Zone, (2) Coral Patch Reefs Zone, (3) Mixed Sediments Carbonates Zone, ( 4) Algae Fouling Zone, (5) Alignment Rocky Zone, (6) Sand Waves Field (7) Deposit siliciclastic sands