964 resultados para Neumann boundary conditions
Resumo:
As condições naturais dos recursos hídricos podem ser modificadas com o uso insustentável dos mesmos. Por exemplo, em Belém, capital do Estado do Pará, o lago Água Preta, apresenta uma história de degradação que põe em risco o abastecimento de água potável em Belém. Nesse contexto, a principal contribuição do presente trabalho, é a realização de um estudo sobre a modelagem hidrodinâmica e a morfologia do lago Água Preta. Tal estudo foi efetuado a partir de duas fontes de dados. A primeira é um mapa topobatimétrico de 1975, que faz parte dos arquivos da COSANPA. A segunda foi uma batimetria realizada com um ADCP em 2009. A modelagem iniciase com a elaboração dos modelos de elevação de terreno de 1975 e 2009, também utilizados para o estudo morfológico do lago. Para a utilização do modelo hidrodinâmico, são necessários os modelos de elevação de terreno supracitados; o modelo de rugosidade do relevo subaquático do lago, para o cálculo do coeficiente de Manning; e as condições de contorno. As simulações hidrodinâmicas de velocidade e profundidades foram realizadas utilizando o modelo de Saint-Venant do tipo águas rasas. No caso das profundidades, as mesmas foram comparadas com dados disponíveis na literatura, a fim de validá-las. Os resultados das simulações hidrodinâmicas, ou seja, profundidades e velocidades, associadas ao estudo morfológico, são peças chave na análise dos padrões de escoamento e de tendências de assoreamento do lago.
Resumo:
No presente trabalho, nós investigamos a densidade de energia e a força de reação a radiação quântica sobre uma fronteira em movimento que impõem ao campo escalar, sem massa, condições de contorno de Dirichlet ou Neumann. Apesar de assumirmos um particular movimento para fronteira, introduzido por Walker e Davies muitos anos atrás (J. Phys. A, 15 L477, 1982), consideramos novas possibilidades para o estado inicial do campo, entre as quais, estados térmicos e coerentes. Nós investigamos, também, o problema de uma cavidade com uma das fronteiras no particular movimento proposto por Walker e Davies, levando em conta o estado de vácuo, térmico e coerente como estados iniciais do campo. Finalmente, investigamos o caso de uma fronteira não estática que impõem condições de contorno de Robin ao campo.
Resumo:
Nesta dissertação obtemos a força de Casimir a temperatura finita entre duas linhas paralelas sujeitas a condição de fronteira do tipo linhas mistas, no contexto da teoria de Maxwell- Chern-Simons em (2+1) dimensões. Além disso, analisamos a simetria de inversão de temperatura apresentada pela energia livre de Helmholtz do modelo para diferentes condições de fronteira. Iniciamos estudando aspectos gerais do formalismo de Matsubara no intuito de introduzirmos efeitos térmicos na teoria; também analisamos aspectos gerais da teoria de MCS em (2 + 1) dimensões. Posteriormente, revisitamos o cálculo da força de Casimir para o caso de duas linhas paralelas infinitamente permeáveis magneticamente a temperatura nula e finita, bem como o caso de linhas mistas a temperatura nula, onde tomamos uma linha perfeitamente condutora eletricamente e outra infinitamente permeável magneticamente. Em seguida, apresentamos novos resultados envolvendo a força de Casimir a temperatura finita com condições de fronteira do tipo linhas mistas. Por último, analisamos a simetria de inversão de temperatura associada a energia livre de Helmholtz do modelo, mostrando que mesmo para condições mistas e possível obter uma espécie de simetria residual, em analogia a resultados existentes para a eletrodinâmica em (3+1) dimensões.
Resumo:
É apresentada uma solução totalmente analítica do modelo da falha infinita para o modo TE magnetotelúrico, levando em conta a presença do ar, utilizando como base o trabalho de Sampaio apresentado em 1985, que apresenta uma solução parcialmente analítica e parcialmente numérica – solução híbrida. Naquela solução foram aplicadas oito condições de contorno, sendo que em quatro delas foram encontradas inconsistências matemáticas que foram dirimidas com alterações adequadas nas soluções propostas por Sampaio. Tais alterações propiciaram a chegarse à solução totalmente analítica aqui apresentada. A solução obtida foi comparada com a solução de Weaver, com a de Sampaio e com o resultado do método numérico dos elementos finitos para contrastes de resistividade iguais a 2, 10 e 50. A comparação da solução analítica, para o campo elétrico normalizado, com a solução de elementos finitos mostra que a solução analítica proporcionou resultados mais próximos, em comparação aos fornecidos por Weaver e por Sampaio. Este é um problema muito difícil, aberto para uma solução analítica definitiva. A solução apresentada aqui é, nesta direção, um grande passo.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Investiga-se a equação de Schrödinger unidimensional com uma classe de potenciais V(|x|) que se anulam no infinito e apresentam singularidade dominante na origem na forma α/|x|β(0 < β < 2). A hermiticidade dos operadores associados com quantidades físicas observáveis é usada para determinar as condições de contorno apropriadas. Dupla degenerescência e exclusão de soluções simétricas, consoante o valor de β, são discutidas. Soluções explícitas para o átomo de hidrogênio e o potencial de Kratzer são apresentadas.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Física - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)