992 resultados para bulk glasses
Resumo:
Infrared absorption experiments have been performed on hydrogenated and deuterated bulk boron- and aluminum-doped-Si and implanted P, As, and Sb donors in silicon. A first evidence of complex formation in bulk p-type Si is obtained and the spectra confirm the anomalous 3.3-cm-1 deuterium frequency shift with respect to boron isotopes. The ratio of the D-B-11 and D-B-10 peak areas is found to be the same as that of the two boron isotopes natural abundance. In donor-implanted silicon, a quantitative analysis of the obtained data has allowed a rough estimate of the passivating rate due to diffusing deuterium. While the frequencies of the various vibrational lines are found to be in agreement with those reported in the literature, the data on the broad line at 1660 cm-1 (H) or 1220 cm-1 (D) seem to suggest an assignment of this peak to a complex in the bulk involving some type of defect due to the implantation process.
Resumo:
High concentrations of Si and Zn were implanted into (0001) AlN bulk crystal grown by the self-seeded physical vapor transport (PVT) method. Cathode luminescence (CL) and photoluminescence (PL) spectroscopy were used to investigate the defects and properties of the implanted AlN. PL spectra of the implanted AlN are dominated by a broad near-band luminescence peak between 200 and 254 nm. After high temperature annealing, implantation induced lattice damages are recovered and the PL intensity increases significantly, suggesting that the implanted impurity Si and Zn occupy lattice site of Al. CL results imply that a 457 nm peak is Al vacancy related. Resistance of the AlN samples is still very high after annealing, indicating a low electrical activation efficiency of the impurity in AlN single crystal.
Resumo:
The defects and the lattice perfection of an AlN (0001) single crystal grown by the physical vapor transport (PVT) method were investigated by wet etching, X-ray diffraction (XRD), and infrared absorption, respectively. A regular hexagonal etch pit density (EPD) of about 4000 cm~(-2) is observed on the (0001) A1 surface of an AlN single crystal. The EPD exhibits a line array along the slip direction of the wurtzite structure, indicating a quite large thermal stress born by the crystal in the growth process. The XRD full width at half maximum (FWHM) of the single crystal is 35 arcsec, suggesting a good lattice perfection. Pronounced infrared absorption peaks are observed at wave numbers of 1790, 1850, 2000, and 3000 cm~(-1), respectively. These absorptions might relate to impurities O, C, Si and their complexes in AlN single crystals.
Resumo:
Phosphorus was diffused into CVT grown undoped ZnO bulk single crystals at 550 and 800℃ in a closed quartz tube. The P-diffused ZnO single crystals were characterized by the Hall effect, X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL), and Raman scattering. The P-diffused ZnO single crystals are n-type and have higher free electron concentration than undoped ZnO, especially for the sample diffused at 800℃. The PL measurement reveals defect related visible broad emissions in the range of 420-550nm in the P-diffused ZnO samples. The XPS result suggests that most of the P atoms substitute in the Zn site after they diffuse into the ZnO single crystal at 550℃ ,while the P atom seems to occupy the O site in the ZnO samples diffused at 800℃. A high concentration of shallow donor defect forms in the P-diffused ZnO,resulting in an apparent increase of free electron concentration.
Resumo:
A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 150mA injection current, the full width at half maximum of the emission spectrum of the SLD is about 72nm, ranging from 1602 to 1674nm. The emission spectrum is smooth and flat. The ripple of the spectrum is less than 0.3dB at any wavelength from 1550 to 1700nm. An output power of 4.3mW is obtained at a 200mA injection current under continuous-wave operation at room temperature. This device is suitable for the applications of light sources for gas detectors and L-band optical fiber communications.
Resumo:
A kind of novel broad-band superluminescent diodes (SLDs) using graded tensile-strained bulk InGaAs is developed. The graded tensile-strained bulk InGaAs is obtained by changing only group-III trimethyl-gallium source flow during low-pressure metal organic vapor-phase epitaxy. At the injection current of 200 mA, the fabricated SLDs with such structure demonstrate full-width at half-maximum spectral width of 106 nm and the output light power of 13.6 mW, respectively.