973 resultados para silicon on insulator
Resumo:
A high quality (Q) factor microring resonator in silicon-on-insulator rib waveguides was fabricated by electron beam lithography, followed by inductively coupled plasma etching. The waveguide dimensions were scaled down to submicron, for a low bending loss and compactness. Experimentally, the resonator has been realized with a quality factor as high as 21,200, as well as a large extinction ratio 12.5dB at telecommunication wavelength near 1550nm. From the measured results, propagation loss in the rib waveguide is determined as low as 6.900/cm. This high Q microring resonator is expected to lead to high speed optical modulators and bio-sensing devices.
Resumo:
We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is about 1.8dB at 1550nm, and the mode conversion loss can be less than 0.5dB. The discussion of the present state-of-the-art is also involved. The proposed coupler can be used in chip-to-chip communication.
Resumo:
Micro-cavity structure composed of silicon wire with 240nm square cross section and two symmetrical sidewall waveguide Bragg gratings is fabricated and studied for the operation under telecommunication wavelengths. Optical filter of quasi-TE mode was realized based on this cavity. In such micro-cavity, optical quality factor (Q) was measured up to 380 with a 4.8nm free spectral range (FSR) and 12dB fringe contrast (FC). The measured group index of silicon waveguide with only 240nm square cross section was between 3.80 and 5.43. It is the first time group delay of silicon wire waveguide with such small core dimension is studied. Larger group delay can be expected after optimizing the design parameters and the fabrication process.
Resumo:
We report on the design and fabrication of a photonic crystal (PC) channel drop filter based on an asymmetric silicon-on-insulator (SOI) slab. The filter is composed of two symmetric stick-shape micro-cavities between two single-line-defect (W1) waveguides in a triangular lattice, and the phase matching condition for the filter to improve the drop efficiency is satisfied by modifying the positions and radii of the air holes around the micro-cavities. A sample is then fabricated by using electron beam lithography (EBL) and inductively coupled plasma (ICP) etching processes. The measured 0 factor of the filter is about 1140, and the drop efficiency is estimated to be 73% +/- 5% by fitting the transmission spectrum.
Resumo:
An ultra-compact silicon-on-insulator based photonic crystal corner mirror is designed and optimized. A sample is then successfully fabricated with extra losses 1.1 +/- 0.4dB for transverse-electronic (M) polarization for wavelength range of 1510-1630nm.
Resumo:
zhangdi于2010-03-29批量导入
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:02:20Z No. of bitstreams: 1 Design and Simulation Analysis of Spot-Size Converter in Silicon-On-Insulator.pdf: 239163 bytes, checksum: 82db1386c266d0c07442a972348da08c (MD5)
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:08:51Z No. of bitstreams: 1 High-Q and High-extinction-ratio Microdisk Add-drop Filter with Grating Couplers in Silicon-on-Insulator.pdf: 662474 bytes, checksum: dbdd3fba410c875bd74a6d4823930a44 (MD5)
Resumo:
A novel silicon structure consisting of a silicon-on-defect layer (SODL), with enhanced surface Hall mobility in the surface layer on a buried defect layer (DL), has been discovered [J. Li, Nucl. Instr. and Meth. B59/60 (1991) 1053]. SODL material was formed by using proton implantation and subsequent two-step annealing. The implantation was carried out with a Varian 350D ion implanter. Based on the discovery, a standard measurement method (current-voltage curve method) was adopted to measure the true resistivity value of the DL in order to replace the spreading resistivity measurement by which the true resistivity in seriously defective silicon cannot be obtained. By adopting the current-voltage current method, the true resistivity value of the DL is measured to be 4.2 x 10(9) OMEGA cm. The SODL material was proved to be a silicon-on-insulator substrate.
Resumo:
We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.
Resumo:
An improved 2 ×2 silicon-on-insulator Mach-Zehnder thermo-optical switch is designed and fabricated, which is based on strongly guided multimode interference couplers and single- mode phase-shifting arms. The multimode interference couplers and input/output waveguides are deeply etched to improve coupler performances and coupler-waveguide coupling efficiencies. However, shallow etching is used in the phase-shifting arms to guarantee single-mode property. The strongly guided coupler presents an attractive uniformity about 0. 03 dB and a low propagation loss of -0.6 dB. The 2× 2 switch shows an insertion loss as low as -6.8 dB, where the fiber-waveguide coupling loss of -4.3 dB is included, and the response-time is measured as short as 6.8 μs, which are much better than our previous results.
Resumo:
One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.
Resumo:
The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Intersection angle greater than 20° provides negligible crosstalk (<-30 dB) and very low insertion loss.Any reduction in bend radius and intersection angle is at the cost of the degradation of characteristics of bent waveguide and intersecting waveguide, respectively.
Resumo:
A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minimum and maximum excess loss for the matrix are 6.6 and 10.4dB,respectively.The crosstalk in the matrix is measured to be between -12 and -19.8dB.The switching speed of the matrix is less than 30μs.The power consumption for the single switch element is about 330mW.