111 resultados para AL0.48IN0.52AS
Resumo:
Subband structure and depolarization shifts in an ultrahigh mobility GaAs/Al0.24Ga0.76As quantum well are studied using magnetoinfrared spectroscopy via resonant subband Landau level coupling. Resonant couplings between the first and up to the fourth subbands are identified by well-separated antilevel-crossing split resonance, while the hy-lying subbands were identified by the cyclotron resonance linewidth broadening in the literature. In addition, a forbidden intersubband transition (first to third) has been observed. With the precise determination of the subband structure, we find that the depolarization shift can be well described by the semiclassical slab plasma model and the possible origins for the forbidden transition are discussed.
Resumo:
A systematic investigation on the photoluminescence (PL) properties of InxGa1-xAs/AlyGa1-xAs (x = 0.15, y = 0, 0.33) strained quantum wells (SQWs) with well widths from 1.7 to 11.0 nm has been performed at 77 K under high pressure up to 40 kbar. The experimental results show that the pressure coefficients of the exciton peaks corresponding to transitions from the first conduction subband to the heavy-hole subband increase from 10.05 meV/kbar of 11.0 nm well to 10.62 meV/kbar of 1.8 nm well for In0.15Ga0.85As/GaAs SQWs. However, the corresponding pressure coefficients slightly decrease from 9.93 meV/kbar of 9.0 nm well to 9.73 meV/kbar of 1.7 nm well for In0.15Ga0.85As/Al0.33Ga0.67As SQWs. Calculations based on the Kronig-Penney model reveal that the increased or decreased barrier heights and the increased effective masses with pressure are the main reasons of the change in the pressure coefficients.
Resumo:
We present distinct evidence of anticrossing behavior for excitonic transitions due to resonant coupling of heavy-hole ground levels in a biased GaAs/Al0.35Ga0.65As/GaAs (50/40/100 angstrom) asymmetric coupled-double-quantum-wells p-i-n structure by using photoluminescence spectra. The minimum level splitting is about 2.5 meV.
Resumo:
The tunneling from an AlGaAs confined thin layer to a GaAs layer in the GaAs/Al0.33Ga0.67As/GaAs structure during the trapped electron emission from deep level in the AlGaAs to its conduction band has been observed by deep level transient spectroscopy. With the aid of the tunneling effect, the conduction-band offset DELTAE(c) was determined to be 0.260 eV, corresponding to 63% of DELTAE(g). A calculation was also carried out based on this tunneling model by using the experimental value of DELTAE(c) = E2 - E1 = 0. 260 eV, and good agreement between the experimental and calculated curves is obtained.
Resumo:
Raman spectra of (GaAs)n1/(AlAs)n2 ultrathin-layer superlattices were measured at room temperature and under off-resonance conditions. The experimental results show that there are two effects in ultrathin-layer superlattices: the confinement effect of LO phonons and the alloy effect. It is found that the relative intensity of the disorder-activated TO mode can give a measure of the alloy effect. The Raman spectra of one-monolayer superlattices measured in various scattering configurations are very similar to those of the Al0.5Ga0.5As alloy, and thus the alloy effect is prominent. However, in the case of monolayer number n greater-than-or-equal-to 4, the confined effect is prominent, while the alloy effect is only shown as an interface effect.
Resumo:
Polaron cyclotron resonance (CR) has been studied in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well structures in magnetic field up to 30 T. Large avoided-level-crossing splittings of the CR near the GaAs reststrahlen region, and smaller splittings in the region of the AlAs-like optical phonons of th AlGaAs barriers, are observed. Based on a comparison with a detailed theoretical calculation, the high frequency splitting, the magnitude of which increases with decreasing well width, is assigned to resonant polaron interactions with AlAs-like interface phonons.
Resumo:
The optical and structural properties of anodized AlxGa1-xAs films were investigated by using optical reflectance, X-ray photoemission and Auger electron spectroscopy (XPS and AES). II was found that the anodization process occurs progressively from the surface to the bulk of AlxGa1-xAs and the formed oxidation film comprises mainly oxides of Al and Ga together with a relatively small amount of As. The refractive indexes of the anodized Al0.8Ga0.2As film and Al0.8Ga0.2As film itself were deduced to be about 1.80 and 3.25, respectively, indicating that the anodization film is desirable for anti-reflection coating of the surface of AlxGa1-xAs/GaAs solar cells. (C) 1997 Elsevier Science S.A.
Resumo:
The crossover between two regimes has been observed in the vertical electric transport of weakly coupled GaAs/AlAs superlattices (SLs). At fixed d.c. bias, the SLs can be triggered by illumination to switch from a regime of temporal current oscillation to the formation of a stable electric field domain. The conversion can be reversed by raising the sample temperature to about 200 K. An effective carrier injection model is proposed to explain the conversion processes, taking into account the contact resistance originating from DX centres in the n(+)-Al0.5Ga0.5As contact layers which is sensitive to light illumination and temperature. In addition, quasiperiodic oscillations have been observed at a particular d.c. bias voltage.
Resumo:
We present photoluminescence studies on highly dense two-dimensional electron gases in selectively Si delta-doped GaAs/In0.18Ga0.82As/Al0.25Ga0.75As quantum wells (N(s) = 4.24 x 10(12) cm-2). Five well-resolved photoluminescence lines centered at 1.4194, 1.4506, 1.4609, 1.4695 and 1.4808 eV were observed, which are attributed to the subband excition emission. The subband separations clearly exhibit the feature of a typical quantum well with triangle and square potential. These very intensive and sharp luminescence peaks with linewidths of 2.2 to 3.5 meV indicate the high quality of the structures. Their dependence on the excitation intensity and temperatures are also discussed.
Resumo:
感应耦合等离子体(ICP)刻蚀在AlGaN基紫外探测器台面制作中起着重要作用,初步研究了Cl2/Ar/BCl3ICP刻蚀对A1GaN材料的损伤。运用X射线光电子能谱(XPS)对ICP刻蚀前后的n型Al0.45Ga0.55N表面进行了分析,并对刻蚀后AlGaN材料在N2气中快速热退火进行了研究。结果表明,在N2气中550℃退火3min对材料的电学性能有明显的改善作用。
Resumo:
分别在金属有机化学汽相沉积(MOCVD)生长的i-Al0.33Ga0.67N/AlN/n-GaN和p-Al0.45Ga0.55N/i—Al0.45Ga0.55N/n+-Al0.65Ga0.35N的异质结构上,成功研制了太阳盲区的肖特基型和PIN型紫外探测器。研究结果表明,Au与i—Al0.33Ga0.67N形成了较好的肖特基结,响应波长从250—290nm,峰值(286nm)响应率约为0.08A/W;PIN型紫外探测器的响应波长从230~275nm,峰值(246nm)响应率约为0.02A/W。
Resumo:
文章研究了p-GaN/i—GaN/n-Al0.3Ga0.7N异质结背照式p-i—n可见盲紫外探测器的制备与性能。器件的响应区域为310~365nm,最大响应率为0.046A/W,对应的内量子效率为19%,优值因子R0A达到1.77×10^8Ω·cm^2,相应的在363nm处的探测率D^*=2.6×10^12cmHz^1/2W^-1。
Resumo:
研究了Al0.1-Ga0.9N/GaN异质结p-i-n结构可见盲紫外探测器的制备与性能,P区采用Al组分含量为0.1的AlGaN外延材料形成窗口层,使340-365nm波段的紫外光可以直接透过P区到达i区并被吸收,有效提高了这个波段的响应率与量子效率,并且研究了不同P区AlGaN外延层厚度对探测器性能的影响,制备了两种不同P区厚度(0.1μm和0.15μm)的器件,测试结果表明,P区的厚度对200-340nm波段光吸收的量子效率影响较大,而i区的晶体质量的提高可以有效提高340-365nm波段光吸收的量子效率,并且当P区AlGaN厚度为0.15μm时,器件的峰值响应率达到0.214A/W,在考虑表面反射时外量子效率高达85.6%,接近理论极限,并且在零偏压时暗电流密度为3.16nA/cm^2,表明器件具有非常高的信噪比。
Resumo:
研究了一些半导体低维结构的压力光谱.测得平均直径为26、52和62nm的In0.55Al0.45As/Al0.5Ga0.5As量子点发光峰的压力系数分别为82、94和98 meV/GPa.表明这些发光峰具有Γ谷的特性,这些量子点为Ⅰ型量子点.而平均直径为7nm的量子点发光峰的压力系数为-17 meV/GPa,具有X谷的特性.所以这种小量子点为Ⅱ型量子点.测得ZnS:Mn纳米粒子中Mn发光峰的压力系数为-34.6meV/GPa,与晶体场理论的预计一致.而DA对发光峰基本不随压力变化,表明它应该与ZnS基体中的表面缺陷有关.测得ZnS:Cu纳米粒子中Cu的发光峰的压力系数为63.2meV/GPa,与ZnS体材料的带隙压力系数相同.表明Cu引入的受主能级具有浅受主的某些特点.测得ZnS:Eu纳米粒子中Eu发光峰的压力系数为24.1meV/GPa,与晶体场理论的预计不同.可能和Eu的激发态与ZnS导带间的相互作用有关.
Resumo:
利用分子束外延方法生长了激射波长约为9μm的GaAs/Al0.45Ga0.55As量子级联激光器.条宽35μm,腔长2mm的器件准连续激射温度最高达120K,81K下未经收集效率修正的峰值功率超过70mW.