989 resultados para EMITTING-DEVICES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the proposed system is a V-shaped structure with two polycrystalline solar cells. Compared to solar cells in a conventional approach, the V-shaped structure enhances external quantum efficiency and leads to an increase of 24% in power conversion efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated 1.5 mum light emission from InAs quantum dots (QDs) capped with a thin GaAs layer. The extension of the emission wavelength can be assigned to the large QD height. We also investigate the effect of growth interruption on the PL properties and the shape of InAs QDs fabricated by migration-enhanced growth (MEG). Contrary to expectation, we observed a remarkable blueshift of the emission energy with the growth interruption in MEG mode. Detailed investigations reveal that the blueshift is related to the reduced island height with the growth interruption, which is confirmed by reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) measurement results. Accordingly, the structure changes of the islands are interpreted in terms of thermodynamic and kinetic theories. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled quantum dots and wires were obtained in the InxGa1-xAs/GaAs and InAs/In0.52Al0.48As/lnP systems, respectively, using molecular beam epitaxy (MBE). Uniformity in the distribution, density, and spatial ordering of the nanostructures can be controlled to some extent by adjusting and optimizing the MBE growth parameters. Laser devices and superluminescent diodes were fabricated with InAs/GaAs self-assembled quantum dots as the active region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel phase-locked loop (PLL) frequency synthesizer using single-electron devices (SEDs) and metal-oxide-semiconductor (MOS) field-effect transistors. The PLL frequency synthesizer mainly consists of a single-electron transistor (SET)/MOS hybrid voltage-controlled oscillator circuit, a single-electron (SE) turnstile/MOS hybrid phase-frequency detector (PFD) circuit and a SE turnstile/MOS hybrid frequency divider. The phase-frequency detection and frequency-division functions are realized by manipulating the single electrons. We propose a SPICE model to describe the behavior of the MOSFET-based SE turnstile. The authors simulate the performance of the PILL block circuits and the whole PLL synthesizer. Simulation results indicated that the circuit can well perform the operation of the PLL frequency synthesizer at room temperature. The PILL synthesizer is very compact. The total number of the transistors is less than 50. The power dissipation of the proposed PLL circuit is less than 3 uW. The authors discuss the effect of fabrication tolerance, the effect of background charge and the SE transfer accuracy on the performance of the PLL circuit. A technique to compensate parameter dispersions of SEDs is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmon modulated nano-aperture vertical-cavity surface-emitting lasers were fabricated from common 850 nm VCSELs. When the diameter of the aperture was 200 nm, and the period of grating was 400 nm, the maximum far-field output power reached 0.3mW at a driving current of 15 mA. The fabrication process was described and the beaming properties were studied via experimentally and theoretically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A photonic crystal vertical-cavity-surface-emitting laser ( PC-VCSEL) with a wavelength of about 850 nm was realized. The direct-current electrically-driven PC-VCSELs with a minimum threshold current of 2 mA and a maximum threshold current of 13.5 mA were obtained. We fabricated a series of PC-VCSEL chips whose lattice constants are in the range from 0.5 to 3 mu m with different filling factors, and found that the laser characterization depends on the lattice constant, the filling factor, the size of cavity, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroluminescence (EL) from AlInGaN-InGaN multiquantum-well violet light-emitting diodes is investigated as a function of forward bias. Two distinct regimes have been identified: 1) quantum-confined Stark effect at low and moderately high forward biases; 2) heating effect at high biases. In the different regimes, the low-temperature EL spectra exhibit different spectral features which are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3', 7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) bulk heterojuriction photovoltaic cells. Photolummescence quenching experimental results indicate that the ultra,fast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity about 1.2 eV greater than that of MDMO-PPV. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electroluminescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report the effects of rapid thermal annealing (RTA) on the emission properties of highly uniform self-assembled InAs quantum dots (QDs) emitting at 1.3 mu m grown on GaAs substrate by metal organic chemical vapor deposition. Postgrowth RTA experiments were performed under N-2 flow at temperatures ranging from 600 to 900 degrees C for 30 s using GaAs proximity capping. Surprisingly, in spite of the capping, large blueshifts in the emission peak (up to about 380 meV at 850 degrees C) were observed (even at low annealing temperatures) along with enhanced integrated photoluminescence (PL) intensities. Moreover, pronounced peak broadenings occurred at low annealing temperatures (< 700 degrees C), indicating that RTA does not always cause peak narrowing, as is typically observed with traditional QDs with large inhomogeneous PL linewidths. The mechanism behind the large peak blueshift was studied and found to be attributed to the as-grown QDs with large size, which cause a larger dot-barrier interface and greater strain in and near the QD regions, thereby greatly promoting Ga-In intermixing across the interface during RTA. The results reported here demonstrate that it is possible to significantly shift the emission peak of the QDs by RTA without any additional procedures, even at lower annealing temperatures. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated surface plasmon modulated nano-aperture vertical-cavity surface-emitting lasers (VCSELs) from common 850 nm VCSELs using focus ion beam etching with Ga+ ion source. The far-field output power is about 0.3 mW at a driving current of 15 mA with a sub-wavelength aperture surrounded by concentric periodic grooves. The enhancement of transmission intensity can be explained by diffraction and enhanced fields associated with surface plasmon. This structure also exhibits beaming properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupling and packaging have become decisive factors in the final performance and cost of high-frequency optoelectronic devices. Here, we report the design and successful fabrication of a silicon bench that integrates a V-groove and high-frequency coplanar waveguide (CPW) on the same high-resistivity silicon wafer as an effective optoelectronic packaging solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photonic crystal devices with feature sizes of a few hundred nanometers are often fabricated by electron beam lithography. The proximity effect, stitching error and resist profiles have significant influence on the pattern quality, and therefore determine the optical properties of the devices. In this paper, detailed analyses and simple solutions to these problems are presented. The proximity effect is corrected by the introduction of a compensating dose. The influence of the stitching error is alleviated by replacing the original access waveguides with taper-added waveguides, and the taper parameters are also discussed to get the optimal choice. It is demonstrated experimentally that patterns exposed with different doses have almost the same edge-profiles in the resist for the same development time, and that optimized etching conditions can improve the wall angle of the holes in the substrate remarkably. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some important parameters, such as gain, 3 dB bandwidth and threshold current of 1.3 mu m quantum dot vertical-cavity surface-emitting laser (QD VCSEL) are theoretically investigated. Some methods are developed to improve the VCSEL's modulation response. Significant improvement are prediced for p-type modulation doping. In connection with the threshold characteristic, we found that a structure with short cavity, multilayer quantum dots stack, p-type modulation doping and double intracavity contact on an un-doped DBR is much better suited to high speed quantum dot VCSELs. The parasitic effects of the VCSEL are,analyzed and the influence of packaging of the VCSEL on its modulation responds is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs-based InAs quantum dots using InGaAs composition-graded metamorphic layers have been investigated by molecular beam epitaxy. Emission with the wavelength similar to 1.5 mu m from the dots was obtained at room temperature with the relatively large full width at half maximum. The emission wavelength is relatively stable when subjected to fast annealing. The number density of dots reached similar to 6 x 10(10) cm(-2). Undulated morphology was observed on the surface of the sample, which has some influence on the dot size and distribution. In epilayers, misfit dislocations were confined within the step-graded InGaAs metamorphic buffer layer. (c) 2006 Elsevier B.V. All rights reserved.