882 resultados para Cardiac biomarker
Resumo:
The objective of this study was to investigate the catalytic activity of basic aminopeptidase (APB) and its association with periarticular edema and circulating tumor necrosis factor (TNF)-alpha and type II collagen (CII) antibodies (AACII) in a rat model of rheumatoid arthritis (RA) induced by CII (CIA). Edema does not occur in part of CH-treated, even when AACII is higher than in control. TNF-alpha is detectable only in edematous CII-treated. APB in synovial membrane is predominantly a membrane-bound activity also present in soluble form and with higher activity in edematous than in non-edematous CH-treated or control. Synovial fluid and blood plasma have lower APB in non-edematous than in edematous CII-treated or control. In peripheral blood mononuclear cells (PBMCs) the highest levels of APB are found in soluble form in control and in membrane-bound form in non-edematous CII-treated. CII treatment distinguishes two categories of rats: one with arthritic edema, high AACII, detectable TNF-alpha, high soluble and membrane-bound APB in synovial membrane and low APB in the soluble fraction of PBMCs, and another without edema and with high AACII, undetectable TNF-alpha, low APB in the synovial fluid and blood plasma and high APB in the membrane-bound fraction of PBMCs. Data suggest that APB and CIA are strongly related. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to research Candida dubliniensis among isolates present in a Brazilian yeast collection and to evaluate the main phenotypic methods for discrimination between C. albicans and C. dubliniensis from oral cavity. A total of 200 isolates, presumptively identified as C. albicans or C. dubliniensis obtained from heart transplant patients under immunosuppressive therapy, tuberculosis patients under antibiotic therapy, HIV-positive patients under antiretroviral therapy, and healthy subjects, were analyzed using the following phenotypic tests: formation and structural arrangement of chlamydospores on corn meal agar, casein agar, tobacco agar, and sunflower seed agar; growth at 45 degrees C; and germ tube formation. All strains were analyzed by polymerase chain reaction (PCR). In a preliminary screen for C. dubliniensis, 48 of the 200 isolates on corn meal agar, 30 of the 200 on casein agar, 16 of the 200 on tobacco agar, and 15 of the 200 on sunflower seed agar produced chlamydoconidia; 27 of the 200 isolates showed no or poor growth at 45 degrees C. All isolates were positive for germ tube formation. These isolates were considered suggestive of C. dubliniensis. All of them were subjected to PCR analysis using C. dubliniensis-specific primers. C. dubliniensis isolates were not found. C. dubliniensis isolates were not recovered in this study done with immunocompromised patients. Sunflower seed agar was the medium with the smallest number of isolates of C. albicans suggestive of C. dubliniensis. None of the phenotypic methods was 100% effective for discrimination between C. albicans and C. dubliniensis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Role of reactive oxygen species (ROS)/nitric oxide (NO) balance and renin-angiotensin system in mediating cardiac hypertrophy in hyperthyroidism was evaluated in an in vivo and in vitro experimental model. Male Wistar rats were divided into four groups: control, thyroid hormone, vitamin E (or Trolox, its hydrosoluble analogue), thyroid hormone + vitamin E. Angiotensin II receptor (AT1/AT2) gene expression, immunocontent of AT1/AT2 receptors, angiotensinogen, NADPH oxidase (Nox2), and nitric oxide synthase isoforms, as well as ROS concentration (hydrogen peroxide and superoxide anion) were quantified in myocardium. Thyroid hormone increased ROS and NO metabolites, iNOS, nNOS and eNOS isoforms and it was accompanied by cardiac hypertrophy. AT1/AT2 expression and the immunocontent of angiotensinogen and Nox2 were enhanced by thyroid hormone. Antioxidants reduced ROS levels, Nox2, AT1/AT2, NOS isoforms and cardiac hypertrophy. In conclusion, ROS/NO balance may play a role in the control of thyroid hormone-induced cardiac hypertrophy mediated by renin-angiotensin system. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Although most of effects of Angiotensin II (Ang II) related to cardiac remodelling can be attributed to type 1 Ang II receptor (AT(1)R), the type 2 receptor (AT(2)R) has been shown to be involved in the development of some cardiac hypertrophy models. In the present study, we investigated whether the thyroid hormone (TH) action leading to cardiac hypertrophy is also mediated by increased Ang II levels or by change on AT(1)R and AT(2)R expression, which could contribute to this effect. In addition, we also evaluated the possible contribution of AT(2)R in the activation of Akt and in the development of TH-induced cardiac hypertrophy. To address these questions, Wistar rats were treated with thyroxine (T(4), 0.1 mg/kg BW/day, i.p.), with or without AT(2)R blocker (PD123319), for 14 days. Cardiac hypertrophy was identified based on heart/body weight ratio and confirmed by analysis of atrial natriuretic factor mRNA expression. Cardiomyocyte cultures were used to exclude the influence of TH-related hemodynamic effects. Our results demonstrate that the cardiac Ang II levels were significantly increased (80%, P < 0.001) as well as the AT(2)R expression (50%, P < 0.05) in TH-induced cardiac hypertrophy. The critical involvement of AT(2)R to the development of this cardiac hypertrophy in vivo was evidenced after administration of AT(2) blocker, which was able to prevent in 40% (P < 0.01) the cardiac mass gain and the Akt activation induced by TH. The role of AT(2)R to the TH-induced cardiomyocyte hypertrophy was also confirmed after using PD123319 in the in vitro studies. These findings improve understanding of the cardiac hypertrophy observed in hyperthyroidism and provide new insights into the generation of future therapeutic strategies.
Resumo:
Aging leads to changes in cardiac structure and function. Evidence suggests that the practice of regular exercise may prevent disturbances in the cardiovascular system during aging. We studied the effects of aging on the morphology and morphometry of cardiac neurons in Wistar rats and investigated whether a lifelong moderate exercise program could exert a protective effect toward some deleterious effects of aging. Aging caused a significant decline (28%) in the number of NADH-diaphorase-stained cardiac Animals submitted to a daily session of 60 min, 5 day/week, at 1.1 km/h of running in treadmill over the entire life span exhibited a reversion of the observed decline in the number of cardiac neurons. However, most interesting was that the introduction of this lifelong exercise protocol dramatically altered the sizes of cardiac neurons. There was a notable increase in the percentage of small neurons in the rats of the exercise group compared to the sedentary animals. This is the first time that a protective effect of lifelong regular aerobic exercise has been demonstrated on the deleterious effects of aging in cardiac neurons. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.
Resumo:
Because of human actions, biomarkers have become important to detect and mitigate pollution. This study showed that crystalloids can be a biomarker for analyses of low levels of water-soluble fractions of oil (WSF). Antarctic sea urchins (Sterechinus neumayeri) from regions free of pollution were exposed for 2, 5, 10 and 15 days at different levels of WSF (0.4, 0.8 and 1.2 ppm). No significant differences were observed in the phagocytic rates or the germicide capacity for the yeast Saccharomyces cerevisiae; however, there was a significant increase in the quantity of intranuclear iron crystalloids in phagocytic amoebocytes of urchins exposed to higher levels of WSF. This study characterizes histological alterations in crystalloids of S. neumayeri that could be used as a biomarker for oil contaminants, with a simple and inexpensive protocol.
Resumo:
The objectives of this study were to investigate the presence of the three neurofilament subunits, ubiquitin, proteasome and 3-nitrotyrosine, in CSF samples of ALS patients. CSF samples were obtained by lumbar puncture from 10 ALS patients and six controls. All samples were analysed by Western blotting. Results revealed that neurofilament heavy subunit was identified in 70% of ALS cases and we conclude that this subunit may be a promising biomarker for clinical diagnosis of ALS.
Resumo:
Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/ mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation. J. Cell. Physiol. 226: 666-674, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Electrospun polyaniline nanofibers are one of the most promising materials for cardiac tissue engineering due to their tunable electroactive properties. Moreover, the biocompatibility of polyaniline nanofibes can be improved by grafting of adhesive peptides during the synthesis. In this paper, we describe the biocompatible properties and cardiomyocytes proliferation on polyaniline electrospun nanofibers modified by hyperbranched poly-L-lysine dendrimers (HPLys). The microstructure characterization of the HPLys/polyaniline nanofibers was carried out by scanning electron microscopy (SEM). It was observed that the application of electrical current stimulates the differentiation of cardiac cells cultured on the nanofiber scaffolds. Both electroactivity and biocompatibility of the HPLys based nanofibers suggest the use this material for culture of cardiac cells and opens the possibility of using this material as a biocompatible electroactive 3-D matrix in cardiac tissue engineering.
Resumo:
Cathepsin S is a protease important in major histocompatibility complex (MHC) class II antigen presentation and also in degrading the extracellular matrix. Studies, most of them experimental, have shown that cathepsin S is involved in different pathological conditions such as obesity, inflammation, atherosclerosis, diabetes, and cancer. The overall hypothesis of this report is that high levels of circulating cathepsin S, is a biomarker that reflects pathology induced by inflammation and obesity. The overall aim of this report was to investigate possible associations between circulating cathepsin S, inflammation, glucometabolic disturbance, and its associated diseases in the community. As cathepsin S appears to be a novel risk marker for several pathological conditions, we also wanted to examine the effect of dietary intervention on circulating cathepsin S concentrations. This thesis is based on data from three community-based cohorts, the Uppsala longitudinal study of adult men (ULSAM), the prospective investigation of the vasculature in Uppsala seniors (PIVUS), and a post-hoc study from the randomized controlled NORDIET trial. In the first study, we identified a cross-sectional positive association between serum cathepsin S and two markers of cytokine-mediated inflammation, CRP and IL-6. These associations were similar in non-obese individuals. In longitudinal analyses, higher cathepsin S at baseline was associated with higher CRP and IL-6 levels after six years of follow-up. In the second study, we identified a cross-sectional association between increased serum levels of cathepsin S and reduced insulin sensitivity. These associations were similar in non-obese individuals. No significant association was observed between cathepsin S and insulin secretion. In longitudinal analysis, higher cathepsin S levels were associated with an increased risk of developing diabetes during the six-year follow-up. In the third study, we found that higher serum levels of cathepsin S were associated with increased mortality risk. Moreover, in the ULSAM cohort, serum cathepsin S was independently associated with cause-specific mortality from cardiovascular disease and cancer. In the fourth study, we identified that adherence to an ad libitum healthy Nordic diet for 6 weeks slightly decreased the levels of plasma cathepsin S in normal or marginally overweight individuals, relative to the control group. Changes in circulating cathepsin S concentrations were correlated with changes in body weight, LDL-C, and total cholesterol. Conclusion: This thesis shows that circulating cathepsin S is a biomarker that independently reflects inflammation, insulin resistance, the risk of developing diabetes, and mortality risk. Furthermore, a Nordic diet moderately reduced cathepsin S levels in normal-weight and overweight men and women. This effect may be partially mediated by diet-induced weight loss and possibly by reduced LDL-C concentrations.