989 resultados para k plus proches voisins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a systematic first-principles investigation to calculate the electronic structures, mechanical properties, and phonon-dispersion curves of NpO2. The local-density approximation+U and the generalized gradient approximation+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Np 5f electrons. By choosing the Hubbard U parameter around 4 eV, the orbital occupancy characters of Np 5f and O 2p are in good agreement with recent experiments [A. Seibert, T. Gouder, and F. Huber, J. Nucl. Mater. 389, 470 (2009)]. Comparing to our previous study of ThO2, we note that stronger covalency exists in NpO2 due to the more localization behavior of 5f electrons of Np in line with the localization-delocalization trend exhibited by the actinides series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional gate dielectric material Of SiO2 can not satisfy the need of the continuous downscaling of CMOS dimensions. High-K gate dielectric materials have attracted extensive research efforts recently and obtained great progress. In this paper, the developments of high-K gate materials were reviewed. Based on the author's background and research work in the area, the latest achievements of high-K gate dielectric materials on the recrystalization temperature, the low-K interface layer, and the dielectric breakdown and metal gate electrode were introduced in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure, elastic constants, Poisson's ratio, and phonon dispersion curves of UC have been systematically investigated from the first-principles calculations by the projector-augmented-wave (PAW) method. In order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the local density approximation (LDA) + U and generalized gradient approximation (GGA) + U formalisms for the exchange correlation term. We systematically study how the electronic properties and elastic constants of UC are affected by the different choice of U as well as the exchange-correlation potential. We show that by choosing an appropriate Hubbard U parameter within the GGA + U approach, most of our calculated results are in good agreement with the experimental data. Therefore. the results obtained by the GGA + U with effective Hubbard parameter U chosen around 3 eV for UC are considered to be reasonable. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface dipole and its role in the effective work function (EWF) modulation by Al incorporation are investigated. Our study shows that the interface dipole located at the high-k/SiO2 interface causes an electrostatic potential difference across the metal/high-k interface, which significantly shifts the band alignment between the metal and high-k, consequently modulating the EWF. The electrochemical potential equalization and electrostatic potential methods are used to evaluate the interface dipole and its contribution. The calculated EWF modulation agrees with experimental data and can provide insight to the control of EWF in future pMOS technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of K on the n-GaAs(I 0 0) surface was investigated by X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoemission spectroscopy (SR-PES). The Ga3d and As3d core level was measured for clean and K adsorbed GaAs(I 0 0) surface. The adsorption of K induced chemical reaction between K and As, and the K-As reactant formed when the K coverage theta > I ML. The chemical reaction between K and Ga did not occur, but Ga atoms were exchanged by K atoms. From the data of band bending, the Schottky barrier is 0.70 eV. The Fermi-level pinning was not caused by defect levels. The probable reason is that the dangling bonds of surface Ga atoms were filled by the outer-shell electrons of K atoms, forming a half-filled surface state. The Fermi-level pinning was caused by this half-filled surface state. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structures of InSb1-xNx nanowires are investigated using the ten-band k center dot p method. It is found that nitrogen increases the Rashba coefficient of the nanowires dramatically. For thick nanowires, the Rashba coefficient may increase by more than 20 times. The semiconductor-metal transition occurs more easily in InSb1-xNx nanowires than in InSb nanowires. The electronic structure of InSb1-xNx nanowires is very different from that of the bulk material. For fixed x the bulk material is a semimetal, while the nanowires are metal-like. In InSb1-xNx bulk material and thick nanowires, an interesting decrease of electron effective mass is observed near k=0 which is induced by the nitrogen, but this phenomenon disappears in thin nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of spurious solutions in the eight-band envelope function model is examined and it is shown that spurious solutions arise from the additional spurious degeneracies caused by the unphysical bowing of the conduction bands calculated within the eight-band k center dot p model. We propose two approaches to eliminate these spurious solutions. Using the first approach, the wave vector cutoff method, we demonstrate the origin and elimination of spurious solutions in a transparent way without modifying the original Hamiltonian. Through the second approach, we introduce some freedom in modifying the Hamiltonian. The comparison between the results from the various modified Hamiltonians suggests that the wave vector cutoff method can give accurate enough description to the final results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical constants epsilon(E)=epsilon(1)(E)+iepsilon(2)(E) of unintentionally doped cubic GaN grown on GaAs(001) have been measured at 300 K using spectral ellipsometry in the range of 1.5-5.0 eV. The epsilon(E) spectra display a structure, associated with the critical point at E-0 (direct gap) and some contribution mainly coming from the E-1 critical point. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden-Munoz model dielectric function [M. Munoz et al., J. Appl. Phys. 92, 5878 (2002)]. This model is based on the electronic energy-band structure near critical points plus excitonic and band-to-band Coulomb-enhancement effects at E-0, E-0 + Delta(0) and the E-1, E-1 + Delta(1), doublet. In addition to evaluating the energy of the E-0 critical point, the binding energy (R-1) of the two-dimensional exciton related to the E-1 critical point was estimated using the effective mass/k.p theory. The line, shape of the imaginary part of the cubic-GaN dielectric function shows excitonic effects at room temperature not withstanding that the exciton was not resolved. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tandem amorphous silicon solar cells have attracted extensive interest because of better performance than single junction counterpart. As n/p junctions play an important role in the current transportation of tandem solar cells, it is important to design and fabricate good n/p junctions.The properties of the n/p junction of amorphous silicon (a-Si) were studied. We investigate the effect of interposing a nanocrystalline p(+) layer between n (top cell) and p (bottom cell) layers of a tandem solar cell. The crystalline volume fraction, the band gap, the conductivity and the grain size of the nanocrystalline silicon (nc-Si) p(+) layer could be modulated by changing the deposition parameters.Current transport in a-Si based n/p ("tunnel") junctions was investigated by current-voltage measurements. The voltage dependence on the resistance (V/J) of the tandem cells was examined to see if n/p junction was ohmic contact. To study the affection of different doping concentration to the properties of the nc-Si p(+) layers which varied the properties of the tunnel junctions, three nc-Si p(+) film samples were grown, measured and analyzed.