944 resultados para Puebla, Sitio de, 1863
Resumo:
Uno de los objetos matemáticos que los alumnos manipulan algebraicamente, sin saber su significado, es el concepto del límite matemático. Ejemplo de tal situación son los estándares de evaluación de algunos libros sobre el tema: “aplico las propiedades para hallar límites de funciones sencillas”, “calculo límites infinitos o al infinito de funciones racionales”, entre otros. La presente propuesta pretende que a partir de problemas el alumno construya el significado del límite y del infinito en matemáticas. La propuesta está basada en los sistemas de representación y el modelamiento funcional.
Resumo:
Se presenta un avance de investigación en el cual se aborda el estudio de algunas relaciones lineales a través de procesos de modelación matemática.
Resumo:
La Secretaría de Educación Distrital de Bogotá y el Instituto para la Investigación Educativa y el Desarrollo Pedagógico Idep puso en marcha el Laboratorio de evaluación de Bogotá que tiene como uno de sus propósitos generar espacios de discusión teórica, técnica y política en torno a la problemática de la evaluación desde una perspectiva investigativa. En ese sentido nace las pruebas comprender y el ejercicio reflexivo de los usos de la información como herramienta pedagógica. El presente artículo muestra algunos de los agentes que se asocian a la evaluación interna; y las aplicaciones que se hacen de los reportes de los resultados de evaluaciones masivas como son las pruebas comprender de matemáticas.
Resumo:
En este documento se presentan algunos elementos que permiten reflexionar sobre el proceso de modelación como estrategia didáctica para abordar la construcción de conceptos matemáticos en el aula de clase. Estos elementos se convierten en un avance de la investigación en curso “El proceso de modelación en las aulas escolares del suroeste antioqueño” financiado por el Comité para el desarrollo de la investigación (CODI) y la Dirección de Regionalización de la Universidad de Antioquia.
Resumo:
Este curso presenta un avance en la construcción de escenarios educativos para el aprendizaje de las matemáticas desde el cual se ofrece posibilidades a los estudiantes para encontrar las razones del por qué y para qué del propósito del proceso educativo. Los escenarios de aprendizaje construidos son las relaciones entre espacialidad, identidad y territorialidad, y la cual integra como eje temático contenidos de áreas curriculares como ciencias naturales, educación física, matemáticas, ciencias sociales y lenguaje. Esta relación permite identificar problemas que tienen contenidos importantes desde una perspectiva del aprendizaje, de la importancia sociológica de aprender en la escuela y de la posición misma de los niños.
Resumo:
Este articulo reporta el trabajo de estudiantes de noveno a undécimo grado en la solución de un problema de optimización, en donde el modelado juega un papel principal puesto que les permitió llegar a conclusiones y generalizaciones que no fueron posibles a través del lápiz y el papel. Se comentan las estrategias y procedimientos que siguieron los estudiantes y se destaca la importancia de la mediación instrumental a través de la modelación en el proceso de verificación de la solución del problema.
Resumo:
Tradicionalmente la geometría desde la escuela se ha enseñado desde un mismo sentido: lo bidimensional, sin considerar que las representaciones bidimensionales se hacen precisamente de objetos tridimensionales del mundo físico. Actualmente y según los lineamientos curriculares de matemáticas para una mejor percepción del espacio se requiere que el estudiante comunique y represente el espacio bidimensional a través de experiencias significativas con lo tridimensional, esta relación entre el espacio tridimensional con el plano puede desarrollarse a partir de la construcción de poliedros debido a que con estos se puede propiciar tres tipos de procesos cognitivos importantes para el desarrollo del pensamiento espacial: los procesos de visualización, los procesos de construcción y los procesos de razonamiento.
Resumo:
Con el presente proyecto de investigación se pretenden proponer algunas estrategias didácticas en la perspectiva de potenciar el pensamiento variacional en estudiantes de octavo y Noveno grados, de Educación Básica, a través de situaciones problemas. El estudio se realiza en tres Instituciones Educativas de carácter Público, del municipio de Sincelejo, Colombia. Se emplea un diseño cualitativo que se aproxima a la investigación-acción. Este estudio es realizado por el grupo de investigación “Pensamiento Matemático” (PEMA), con el auspicio de la Universidad de Sucre de Sincelejo, Colombia.
Resumo:
En este taller (de una sesión) se proponen ciertas actividades que conectan el algebra con diversas situaciones del mundo real. La idea es hacer que los presentes desarrollen las tareas para que conozcan otras alternativas para construir conceptos como tasa de cambio o pendiente, modelamiento de datos, líneas de mejor ajuste, datos atípicos, errores en experimentos, bases de ingenierías civil, uso de modelos matemáticos para hacer predicciones y cuando los modelos matemáticos no describen la realidad de los experimentos. En el taller se realizaran tres actividades: A. FORTALEZA DE LAS VIGAS B. ATANDO NUDOS C. CONSTRUCCION DEL TRIACONTRAEDRO ROMBICO (LAMPARA DANESA) El realizar estas experiencias nos ayudaran a entender los estados de conflicto que entra el estudiante a la hora de procesar, adquirir y afianzar el conocimiento
Resumo:
ORIGEN A LA PROPUESTA La experiencia tiene como origen el curso “Mejoramiento del Sistema de Capacitación de Maestros de Matemáticas y Ciencias” otorgado a través del convenio Ministerio de Educación Nacional -MEN – y la Agencia de Cooperación Internacional de Japón –JICA. El curso en mención se desarrolló entre el 17 / 10/ 05 al / en la Universidad Pedagógica de Miyagi - Sendai
Resumo:
La propuesta que hoy presentamos, es el resultado de varios años de implementación del proyecto liderado por el Ministerio de Educación, las Universidades y algunas Secretarías de Educación, conocido como Incorporación de Nuevas Tecnologías al Currículo de las Matemáticas de la Educación Básica y Media de Colombia con la mediación de los Software Interactivos como Cabri y los accesorios externos como sensores para toma de datos. Al definir el objeto de las matemáticas, encontramos que su aprendizaje no sólo se basa en formar el espíritu lógico, sino también proporcionar herramientas para la solución de problemas reales. Por lo tanto, se debe combinar el rigor lógico con la funcionalidad, puesto que además de la lógica formal las matemáticas proporcionan también un poderoso conjunto de herramientas que posibilitan describir, explicar, predecir y modelar situaciones no sólo del mundo científico, sino también de la vida cotidiana (significación). Es por esto, que juega un papel importante implementar en su didáctica, el referirla al mundo de la naturaleza, de las otras ciencias (interdisciplinariedad), y de la cotidianidad del hombre. Es fácil ver los nexos que tienen las Ciencias Naturales con el mundo extraescolar, lo que permite construir el conocimiento a partir de proyectos en donde se manipule en forma directa el mundo real. Las temáticas que se trabajan en esta propuesta además de permitir lo anterior, proporcionan el estudio formal de las matemáticas y el desarrollo de sus diferentes pensamientos. Los ejes temáticos trabajados son: Cinemática, Luz, Electricidad, Calor y Energía y propiedades químicas de las sustancias, entre otras.
Resumo:
Se trata de un estudio realizado alrededor de estrategias didácticas que surgen a partir del triángulo equilátero y sus propiedades. Este ha involucrado a estudiantes de licenciatura en Matemáticas de la Universidad de Cundinamarca y a maestros en formación de la Normal Superior de Pasca. A partir de este se propone una unidad didáctica con algunas actividades diseñadas para ser abordadas con Cabri Géomètre y que están dirigidas a estudiantes de grado séptimo de educación básica secundaria. El fundamento de este trabajo es proponer el desarrollo de temáticas a partir de proyectos de Aula y no simplemente desde la información de contenidos teóricos. Finalmente lo que se hace de manera práctica perdura más en el recuerdo de los estudiantes.
Resumo:
Se presenta una propuesta, para un taller de dos sesiones, sobre el trabajo en equipo como una opción para el aprendizaje en el aula de matemáticas, la cual complementa y apoya los planteamientos hechos en los lineamientos curriculares, particularmente los que se refieren a los procesos generales como: razonamiento, resolución y planteamiento de problemas; comunicación; modelación; y elaboración, comparación y ejercitación de procedimientos. La cual esta basada en el fascículo Resolución de problemas y aprendizaje en equipos: una perspectiva desde la Educación Matemática, preparado para el diplomado que la fundación Fedespegue ofrecerá a los profesores interesados en el trabajo en equipo, para el 2008.
Resumo:
En este trabajo, los autores se cuestionan el surgimiento de una conjetura en la resolución de un problema en el contexto del pensamiento matemático avanzado, en una comunidad de práctica de estudiantes para profesor de matemáticas. Mediante una investigación de diseño, se logró concluir que las refutaciones e interacciones que se dan de forma individual y dentro de las comunidades de aprendizaje, permiten que las intuiciones se movilicen, estableciendo un lenguaje común y una empresa compartida (Wegner, 2001), en la resolución de problemas.
Resumo:
En este trabajo presentamos el análisis de algunas tareas propuestas a estudiantes de grado 11 en torno a la noción de tasa media de variación y tasa instantánea de variación. La propuesta se diseño utilizando como metodología de investigación el aporte de la escuela francesa en torno a las situaciones didácticas de Brousseau y la ingeniería didáctica. Para el análisis de las tareas se utilizaron las unidades de análisis propuestas por Romero (1998) y Camargo (2001); estudio del contenido, estudio de la comprensión y análisis de la interacción didáctica.