969 resultados para HEAT-CONDUCTION
Resumo:
The existing interpretation of the T-1 temperature dependence of the low-field miniband conduction is derived from certain concepts of conventional band theory for band structures resulting from spatial periodicities commensurable with the dimensionalities of the system. It is pointed out that such concepts do not apply to the case of miniband conduction, where we are dealing with band structures resulting from a one-dimensional periodicity in a three-dimensional system. It is shown that in the case of miniband conduction, the current carriers are distributed continuously over all energies in a sub-band, but only those with energies within the width of the miniband contribute to the current. The T-1 temperature dependence of the low-field mobility is due to the depletion of these current-carrying carriers with the rise of temperature.
Resumo:
The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.
Resumo:
Using deep level transient spectroscopy (DLTS) the X conduction-subband energy levels in an AlAs well sandwiched by double GaAs layers were determined. Calculation gives eight subbands in the well with well width of 50 Angstrom. Among them, five levels and the other three remainders are determined by using the large longitudinal electron effective mass m(1)(1.1m(0)) and transverse electron effective mass m(t)(0.19m(0)) at X valley, respectively. Two subbands with the height energies were hardly detectable and the other six ones with lower energies are active in the present DLTS study. Because these six subbands are close to each other, we divided them into three groups. Experimentally, we observed three signals induced from the three groups. A good agreement between the calculation and experiment was obtained. (C) 1995 American Institute of Physics.
Influence of heat treatment of Rayon-based activated carbon fibers on the adsorption of formaldehyde
Resumo:
The now and heat transfer characteristics of China No. 3 aviation kerosene in a heated curved tube under supercritical pressure are numerically investigated by a finite volume method. A two-layer turbulence model, consisting of the RNG k-epsilon two-equation model and the Wolfstein one-equation model, is used for the simulation of turbulence. A 10-species kerosene surrogate model and the NIST Supertrapp software are applied to obtain the thermophysical and transport properties of the kerosene at various temperature under a supercritical pressure of 4 MPa. The large variation of thermophysical properties of the kerosene at the supercritical pressure make the flow and heat transfer more complicated, especially under the effects of buoyancy and centrifugal force. The centrifugal force enhances the heat transfer, but also increases the friction factors. The rise of the velocity caused by the variation of the density does not enhance the effects of the centrifugal force when the curvature ratios are less than 0.05. On the contrary, the variation of the density increases the effects of the buoyancy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Numerical simulations of the multi-shock interactions observable around hypersonic vehicles were carried out by solving Navier-Stokes equations with the AUSMPW scheme and the new type of the IV interaction created by two incident shock waves was investigated in detail. Numerical results show that the intersection point of the second incident shock with the bow shock plays important role on the flow pattern, peak pressures and heat fluxes. In the case of two incident shocks interacting with the bow shock at the same position, the much higher peak pressure and more severe heat transfer rate are induced than the classical IV interaction. The phenomenon is referred to as the multi-shock interaction and higher requirements will be imposed on thermal protection systems.