1000 resultados para CGO algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Clostridium difficile (C. difficile) is a leading cause of infectious diarrhoea in hospitals. Sending faecal samples for testing expedites diagnosis and appropriate treatment. Clinical suspicion of C. difficile based on patient history, signs and symptoms is the basis for sampling. Sending faecal samples from patients with diarrhoea ‘just in case’ the patient has C. difficile may be an indication of poor clinical management.

Aim: To evaluate the effectiveness of an intervention by an Infection Prevention and Control Team (IPCT) in reducing inappropriate faecal samples sent for C. difficile testing.

Method: An audit of numbers of faecal samples sent before and after a decision-making algorithm was introduced. The number of samples received in the laboratory was retrospectively counted for 12-week periods before and after an algorithm was introduced.
Findings: There was a statistically significant reduction in the mean number of faecal samples sent post the algorithm. Results were compared to a similar intervention carried out in 2009 in which the same message was delivered by a memorandum. In 2009 the memorandum had no effect on the overall number of weekly samples being sent.

Conclusion: An algorithm intervention had an effect on the number of faecal samples being sent for C. difficile testing and thus contributed to the effective use of the laboratory service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Richardson–Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rateof O(K^2), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor off ive, of the scaled H-B method on both synthetic and real 3D images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a tensegrity-based co-operative control algorithm for an aircraft formation. The 6 degrees-of-freedom model of the well-known Aerosonde unmanned aerial vehicle (UAV), is integrated with the model of the tensegrity structure and a decentralised control scheme is proposed. The strategy is shown to be scalable for 2n number of UAVs and is able to maintain a firm geometry whilst allowing flexible shape transformations. Simulation results demonstrate the effectiveness and stability of the proposed tensegrity-based formation control algorithm in 3D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a hybrid mixed cost-function adaptive initialization algorithm for the time domain equalizer in a discrete multitone (DMT)-based asymmetric digital subscriber loop. Using our approach, a higher convergence rate than that of the commonly used least-mean square algorithm is obtained, whilst attaining bit rates close to the optimum maximum shortening SNR and the upper bound SNR. Moreover, our proposed method outperforms the minimum mean-squared error design for a range of TEQ filter lengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering and Disjoint Principal Component Analysis (CDP CA) is a constrained principal component analysis recently proposed for clustering of objects and partitioning of variables, simultaneously, which we have implemented in R language. In this paper, we deal in detail with the alternating least-squares algorithm for CDPCA and highlight its algebraic features for constructing both interpretable principal components and clusters of objects. Two applications are given to illustrate the capabilities of this new methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous papers from the authors fuzzy model identification methods were discussed. The bacterial algorithm for extracting fuzzy rule base from a training set was presented. The Levenberg-Marquardt algorithm was also proposed for determining membership functions in fuzzy systems. In this paper the Levenberg-Marquardt technique is improved to optimise the membership functions in the fuzzy rules without Ruspini-partition. The class of membership functions investigated is the trapezoidal one as it is general enough and widely used. The method can be easily extended to arbitrary piecewise linear functions as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method of using the so-colled "bacterial algorithm" (4,5) for extracting a fuzzy rule base from a training set. The bewly proposed bacterial evolutionary algorithm (BEA) is shown. In our application one bacterium corresponds to a fuzzy rule system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete optimization problems are very difficult to solve, even if the dimention is small. For most of them the problem of finding an ε-approximate solution is already NP-hard. The branch-and-bound algorithms are the most used algorithms for solving exactly this sort of problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Adaptive Generalized Predictive Control (AGPC) algorithm can be speeded up using parallel processing. Since the AGPC algorithm needs to be fed with the knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete optimization problems are very difficult to solve, even if the dimantion is small. For most of them the problem of finding an ε-approximate solution is already NP-hard.