945 resultados para mining industry
Resumo:
The purpose of this paper is to provide insight into government attempts at bridging the divide between theory and practice through university-industry research collaboration modelled under engaged scholarship. The findings are based on data sourced from interviews with 47 academic and industry project leaders from 23 large scale research projects. The paper demonstrates a ceiling to the coproduction of knowledge arising from the preconceived beliefs of both academics and industry partners regarding project roles and responsibilities. The findings show that coproduction was constrained by academic partners assuming control over much of the research activities and industry partners failing to confront or challenge academic decision-making because both academics and industry partners placed a higher value on academic knowledge compared with applied or practical knowledge. It is argued the theory of engaged scholarship, and consequent initiatives to encourage engaged scholarship, fail to account for the superior status of academic knowledge.
Resumo:
Background The requirement for dual screening of titles and abstracts to select papers to examine in full text can create a huge workload, not least when the topic is complex and a broad search strategy is required, resulting in a large number of results. An automated system to reduce this burden, while still assuring high accuracy, has the potential to provide huge efficiency savings within the review process. Objectives To undertake a direct comparison of manual screening with a semi‐automated process (priority screening) using a machine classifier. The research is being carried out as part of the current update of a population‐level public health review. Methods Authors have hand selected studies for the review update, in duplicate, using the standard Cochrane Handbook methodology. A retrospective analysis, simulating a quasi‐‘active learning’ process (whereby a classifier is repeatedly trained based on ‘manually’ labelled data) will be completed, using different starting parameters. Tests will be carried out to see how far different training sets, and the size of the training set, affect the classification performance; i.e. what percentage of papers would need to be manually screened to locate 100% of those papers included as a result of the traditional manual method. Results From a search retrieval set of 9555 papers, authors excluded 9494 papers at title/abstract and 52 at full text, leaving 9 papers for inclusion in the review update. The ability of the machine classifier to reduce the percentage of papers that need to be manually screened to identify all the included studies, under different training conditions, will be reported. Conclusions The findings of this study will be presented along with an estimate of any efficiency gains for the author team if the screening process can be semi‐automated using text mining methodology, along with a discussion of the implications for text mining in screening papers within complex health reviews.
Resumo:
This design-based research project addresses the gap between formal music education curricula and the knowledge and skills necessary to enter the professional music industry. It analyses the work of a teacher/researcher who invited her high school students to start their own business venture, Youth Music Industries (YMI). YMI also functioned as a learning environment informed by the theoretical concepts of communities of practice and social capital. The students staged cycles of events of various scales over a three-year period, as platforms for young artists to engage and develop new, young audiences across Queensland, Australia. The study found that students developed an entrepreneurial mindset through acquisition of specific skills and knowledge. Their learning was captured and distilled into a set of design principles, a pedagogical approach transferrable across the creative industries more broadly.
Resumo:
This paper describes a series of trials that were done at an underground mine in New South Wales, Australia. Experimental results are presented from the data obtained during the field trials and suitable sensor suites for an autonomous mining vehicle navigation system are evaluated.
Resumo:
This paper discusses a number of key issues for the development of robust obstacle detection systems for autonomous mining vehicles. Strategies for obstacle detection are described and an overview of the state-of-the-art in obstacle detection for outdoor autonomous vehicles using lasers is presented, with their applicability to the mining environment noted. The development of an obstacle detection system for a mining vehicle is then detailed. This system uses a 2D laser scanner as the prime sensor and combines dead-reckoning data with laser data to create local terrain maps. The slope of the terrain maps is then used to detect potential obstacles.
Resumo:
This paper discusses a Dumber of key issues for the development of robust, obstacle detection systems for autonomous mining and construction vehicles. A taxonomy of obstacle detection systems is described; An overview of the state-of- the-art in obstacle detection for outdoor autonomous vehicles is presented with their applicability to the mining and construction environments noted. The issue of so-called fail-safe obstacle detection is then discussed. Finally, we describe the development of an obstacle detection system for a mining vehicle.
Resumo:
This paper discusses the issue of sensing and control for stabilizing a swinging load. Our work has focused in particular on the dragline as used for overburden stripping in open-pit coal mining, but many of the principles would also be applicable to construction cranes. Results obtained from experimental work on a full-scale production dragline are presented.
Resumo:
This paper discusses some of the sensing technologies available for guiding robot manipulators for a class of underground mining tasks including drilling jumbos, bolting arms, shotcreters or explosive chargers. Data acquired with such sensors, in the laboratory and underground, is presented.
Resumo:
Draglines are extremely large machines that are widely used in open-cut coal mines for overburden stripping. Since 1994 we have been working toward the development of a computer control system capable of automatically driving a dragline for a large portion of its operating cycle. This has necessitated the development and experimental evaluation of sensor systems, machines models, closed-loop control controllers, and an operator interface. This paper describes our steps toward the goal through scale-model and full-scale field experimentation.
Resumo:
Draglines are very large machines that are used to remove overburden in open-cut coal mines. This paper outlines the design of a computer control system to implement an automated swing cycle on a production dragline. Subsystems and sensors have been developed to satisfy the constraints imposed by the task, the harsh operating environment and the mine's production requirements.
Resumo:
Dragline Swing to Dump Automation By Peter Corke, CSIRO Manufacturing Technology/CRC for Mining Technology and Equipment (CMTE) Peter Corke presented a case study of a project to automate the dragline swing to dump operation. The project is funded by ACARP, BHP Coal, Pacific Coal and the CMTE and is being carried out on a dragline at Pacific Coal's Meandu mine near Brisbane. Corke began by highlighting that the minerals industry makes extensive use of large, mechanised machines. However, unlike other industries, mining has not adopted automation and most machines are controlled by human operators on board the machine itself. Choosing an automation target The dragline automation was chosen because: ò draglines are one of the biggest capital assets in a mine; ò performance between operators vary significantly, so improved capital utilisation is possible; ò the dragline is often the bottleneck in production; ò a large part of the operation cycle is spent swinging from dig to dump; and ò it is technically feasible. There has been a history of drag line automation projects, none with great success.
Resumo:
3D printing (3Dp) has long been used in the manufacturing sector as a way to automate, accelerate production and reduce waste materials. It is able to build a wide variety of objects if the necessary specifications are provided to the printer and no problems are presented by the limited range of materials available. With 3Dp becoming cheaper, more reliable and, as a result, more prevalent in the world at large, it may soon make inroads into the construction industry. Little is known however, of 3Dp in current use the construction industry and its potential for the future and this paper seeks to rectify this situation by providing a review of the relevant literature. In doing this, the three main 3Dp methods of contour crafting, concrete printing and D-shape 3Dp are described which, as opposed to the traditional construction method of cutting materials down to size, deliver only what is needed for completion, vastly reducing waste. Also identified is 3Dp’s potential to enable buildings to be constructed many times faster and with significantly reduced labour costs. In addition, it is clear that construction 3Dp can allow the further inclusion of Building Information Modelling into the construction process - streamlining and improving the scheduling requirements of a project. However, current 3Dp processes are known to be costly, unsuited to large-scale products and conventional design approaches, and have a very limited range of materials that can be used. Moreover, the only successful examples of construction in action to date have occurred in controlled laboratory environments and, as real world trials have yet to be completed, it is yet to be seen whether it can be it equally proficient in practical situations. Key Words: 3D Printing; Contour Crafting; Concrete Printing; D-shape; Building Automation.
Resumo:
This thesis is an ecological systems case study of an industry-school partnership. It examines a minerals and energy sector partnership with Queensland schools and explains the operational dynamics. In doing so, an original contribution to theory and practice was presented, together with implications for the impact of industry on education.
Resumo:
This thesis provides the first comprehensive assessment of the economic viability of Australia's Sydney rock oyster industry and forms the bases for future policy and industry management recommendations. In the four separate studies of the thesis, the socio-economic profile of the industry, the market price formation dynamics within Australia's oyster market, efficiency and productivity levels and the potential impact of climate change and market dynamics on the industry's future revenue were investigated. Findings of this project suggest, for example, that market dynamics may pose a greater thread to the future development of this industry than direct effect from climate change.
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.