910 resultados para generalized solutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show the existence of multiple solutions to a class of quasilinear elliptic equations when the continuous non-linearity has a positive zero and it satisfies a p-linear condition only at zero. In particular, our approach allows us to consider superlinear, critical and supercritical nonlinearities. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we establish the existence of standing wave solutions for quasilinear Schrodinger equations involving critical growth. By using a change of variables, the quasilinear equations are reduced to semilinear one. whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution v. In the proof that v is nontrivial, the main tool is the concentration-compactness principle due to P.L. Lions together with some classical arguments used by H. Brezis and L. Nirenberg (1983) in [9]. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a combination of several methods, such as variational methods. the sub and supersolutions method, comparison principles and a priori estimates. we study existence, multiplicity, and the behavior with respect to lambda of positive solutions of p-Laplace equations of the form -Delta(p)u = lambda h(x, u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the existence of monotone positive solutions for a class of beam equations with nonlinear boundary conditions. The results are obtained by using the monotone iteration method and they extend early works on beams with null boundary conditions. Numerical simulations are also presented. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the existence of global solutions for a class of impulsive abstract functional differential equation. An application involving a parabolic system With impulses is considered. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study generalized viscous Cahn-Hilliard problems with nonlinearities satisfying critical growth conditions in W-0(1,p)(Omega), where Omega is a bounded smooth domain in R-n, n >= 3. In the critical growth case, we prove that the problems are locally well posed and obtain a bootstrapping procedure showing that the solutions are classical. For p = 2 and almost critical dissipative nonlinearities we prove global well posedness, existence of global attractors in H-0(1)(Omega) and, uniformly with respect to the viscosity parameter, L-infinity(Omega) bounds for the attractors. Finally, we obtain a result on continuity of regular attractors which shows that, if n = 3, 4, the attractor of the Cahn-Hilliard problem coincides (in a sense to be specified) with the attractor for the corresponding semilinear heat equation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the article is to present a unified approach to the existence, uniqueness and regularity of solutions to problems belonging to a class of second order in time semilinear partial differential equations in Banach spaces. Our results are applied next to a number of examples appearing in literature, which fall into the class of strongly damped semilinear wave equations. The present work essentially extends the results on the existence and regularity of solutions to such problems. Previously, these problems have been considered mostly within the Hilbert space setting and with the main part operators being selfadjoint. In this article we present a more general approach, involving sectorial operators in reflexive Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider attractors A(eta), eta epsilon [0, 1], corresponding to a singularly perturbed damped wave equation u(tt) + 2 eta A(1/2)u(t) + au(t) + Au = f (u) in H-0(1)(Omega) x L-2 (Omega), where Omega is a bounded smooth domain in R-3. For dissipative nonlinearity f epsilon C-2(R, R) satisfying vertical bar f ``(s)vertical bar <= c(1 + vertical bar s vertical bar) with some c > 0, we prove that the family of attractors {A(eta), eta >= 0} is upper semicontinuous at eta = 0 in H1+s (Omega) x H-s (Omega) for any s epsilon (0, 1). For dissipative f epsilon C-3 (R, R) satisfying lim(vertical bar s vertical bar) (->) (infinity) f ``(s)/s = 0 we prove that the attractor A(0) for the damped wave equation u(tt) + au(t) + Au = f (u) (case eta = 0) is bounded in H-4(Omega) x H-3(Omega) and thus is compact in the Holder spaces C2+mu ((Omega) over bar) x C1+mu((Omega) over bar) for every mu epsilon (0, 1/2). As a consequence of the uniform bounds we obtain that the family of attractors {A(eta), eta epsilon [0, 1]} is upper and lower semicontinuous in C2+mu ((Omega) over bar) x C1+mu ((Omega) over bar) for every mu epsilon (0, 1/2). (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce in this paper a new class of discrete generalized nonlinear models to extend the binomial, Poisson and negative binomial models to cope with count data. This class of models includes some important models such as log-nonlinear models, logit, probit and negative binomial nonlinear models, generalized Poisson and generalized negative binomial regression models, among other models, which enables the fitting of a wide range of models to count data. We derive an iterative process for fitting these models by maximum likelihood and discuss inference on the parameters. The usefulness of the new class of models is illustrated with an application to a real data set. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.