Transformed generalized linear models


Autoria(s): CORDEIRO, Gauss M.; ANDRADE, Marinho G. de
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

JOURNAL OF STATISTICAL PLANNING AND INFERENCE, v.139, n.9, p.2970-2987, 2009

0378-3758

http://producao.usp.br/handle/BDPI/28944

10.1016/j.jspi.2009.02.002

http://dx.doi.org/10.1016/j.jspi.2009.02.002

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE BV

Relação

Journal of Statistical Planning and Inference

Direitos

restrictedAccess

Copyright ELSEVIER SCIENCE BV

Palavras-Chave #Dispersion parameter #Exponential family #Family of transformations #Generalized linear model #Generalized ARMA model #Likelihood ratio #Profile likelihood #POWER-TRANSFORMATIONS #NORMALITY #SERIES #Statistics & Probability
Tipo

article

original article

publishedVersion