Power series generalized nonlinear models
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
We introduce in this paper a new class of discrete generalized nonlinear models to extend the binomial, Poisson and negative binomial models to cope with count data. This class of models includes some important models such as log-nonlinear models, logit, probit and negative binomial nonlinear models, generalized Poisson and generalized negative binomial regression models, among other models, which enables the fitting of a wide range of models to count data. We derive an iterative process for fitting these models by maximum likelihood and discuss inference on the parameters. The usefulness of the new class of models is illustrated with an application to a real data set. (C) 2008 Elsevier B.V. All rights reserved. CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
COMPUTATIONAL STATISTICS & DATA ANALYSIS, v.53, n.4, p.1155-1166, 2009 0167-9473 http://producao.usp.br/handle/BDPI/28956 10.1016/j.csda.2008.10.024 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Computational Statistics & Data Analysis |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #NEGATIVE BINOMIAL-DISTRIBUTION #LIKELIHOOD RATIO STATISTICS #POISSON REGRESSION #PROBABILITY-DISTRIBUTIONS #LOCATION #Computer Science, Interdisciplinary Applications #Statistics & Probability |
Tipo |
article original article publishedVersion |